Game Hacking

Academy

A Beginner's Guide to Understanding
Game Hacking Techniques

Created from materials originally published from 2019 to 2021 on https://
gamehacking.academy and https://qgithub.com/GameHackingAcademy.

Created in 2021.

This book is distributed without charge. If you want to support future works, feel free to
donate:

https://www.buymeacoffee.com/gamehackingacad

T Buymeacofjes

Have questions or notice issues? Feel free to contact me via email or Twitter:

attilathedud@gmail.com

https://twitter.com/GameHackingAcad

Computer Photo by Luke Hodde on Unsplash

Licensed under the Creative Commons Attribution-NonCommercial 4.0 International
Public License.

https://gamehacking.academy
https://gamehacking.academy
https://github.com/GameHackingAcademy
https://www.buymeacoffee.com/gamehackingacad
mailto:attilathedud@gmail.com
https://twitter.com/GameHackingAcad
https://unsplash.com/@lukehodde?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText

Table of Contents

Table of Contents
Introduction
External Resources
Basics
1.1 Computer Fundamentals
1.2 Game Fundamentals
1.3 Hacking Fundamentals
1.4 Setting Up a Lab VM
1.5 Memory Hack
Debugging & Reversing
2.1 Debugging Fundamentals
2.2 Reversing Fundamentals
2.3 Changing Game Code
2.4 Reversing Code
2.5 Code Caves
2.6 Using Code Caves
2.7 Dynamic Memory Allocation
2.8 Defeating DMA
Programming
3.1 Programming Fundamentals

3.2 External Memory Hack

o N W

18
24
26
29
37
38
41
45
56
68
72
/8
82
90
91
95

3.3 DLL Memory Hack 110

3.4 Code Caves & DLLs 122
3.5 Printing Text 131
RTS Hacks 142
4.1 Stathack 143
4.2 Map Hack 151
4.3 Macro Bot 160
FPS Hacks 175
5.1 3D Fundamentals 176
5.2 Wallhack (Memory) 183
5.3 Wallhack (OpenGL) 196
5.4 Chams (OpenGL) 217
5.5 Triggerbot 221
5.6 Aimbot 230
5.7 No Recoil 253
5.8 Radar Hack 260
5.9 ESP 266
5.10 Multihack 298
Multiplayer 312
6.1 Multiplayer Fundamentals 313
6.2 Packet Analysis 317
6.3 Reversing Packets 331
6.4 Creating an External Client 345
6.5 Proxying TCP Traffic 356

Tool Development 365

7.1 DLL Injector 366
7.2 Pattern Scanner 372
7.3 Memory Scanner 380
7.4 Disassembler 389
7.5 Debugger 403
7.6 Call Logger 409
Appendix A 415
A.1 Lab VM Setup Script 416
A.2 Wesnoth External Gold Hack 416
A.3 Wesnoth Internal Gold Hack 418
A.4 Wesnoth Code Cave DLL 419
A.5 Wesnoth Stathack 421
A.6 Wesnoth Map Hack 424
A.7 Wyrmsun Macrobot 425
A.8 Urban Terror Memory Wallhack 428
A.9 Urban Terror OpenGL Wallhack 430
A.10 Urban Terror OpenGL Chams 433
A.11 Assault Cube Triggerbot 437
A.12 Assault Cube Aimbot 439
A.13 Assault Cube No Recoil 442
A.14 Assault Cube ESP 443
A.15 Assault Cube Multihack 448

A.16 Wesnoth Multiplayer Bot 480

A.17 Wesnoth ChatBot
A.18 Wesnoth Proxy
A.19 DLL Injector

A.20 Pattern Scanner
A.21 Memory Scanner
A.22 Disassembler
A.23 Debugger

A.24 Call Logger

483
487
491
493
495
499
503
506

Introduction

Hacking games requires a unique combination of reversing, memory management,
networking, and security skills. Even as ethical hacking has exploded in popularity,
game hacking still occupies a very small niche in the wider security community. While it
may not have the same headline appeal as a Chrome Oday or a massive data leak, the
unique feeling of creating a working aimbot for a game and then destroying a server
with it is hard to replicate in any other medium.

When | first started learning game hacking years ago, resources were spread out across
several sites and were very sparse. Typically, you would find a section of code that
linked to a broken site. You would then search around for some forum that would have
some part of the broken site in a post and piece together the information. While this
rewarded thorough searching, it was a massive time-sink. These days, there are several
places where you can find a variety of information regarding game hacking. You can
find boilerplate code for almost any engine, along with the memory offsets for any
structure you may care about.

However, one area still underserved by all the information out today is the concepts
and fundamentals behind the offsets. My hope is that this book helps fill those gaps.

- attilathedud

External Resources

This is a list of all the external resources, such as tools and games, used in this book.
They are ordered by their appearance. This is intended to help if you plan to read this
book in a location without access to the Internet.

e VirtualBox (https://www.virtualbox.org/wiki/Downloads)

e Windows 10 Evaluation Virtual Machine (https://developer.microsoft.com/en-us/
microsoft-edge/tools/vms/)

e Cheat Engine (https://cheatengine.org/)

e xb64dbg (https://x64dbg.com/)

. The Battle of Wesnoth 1.14.9 (https://www.wesnoth.org/)

e Visual Studio 2019 Community Edition (https://visualstudio.microsoft.com/vs/
community/)

. Wyrmsun (https://store.steampowered.com/app/370070/Wyrmsun)

e Urban Terror 4.3.4. (https://www.urbanterror.info/)

e Assault Cube 1.2.0.2 (https://assault.cubers.net/)

e Wireshark (https://www.wireshark.org/)

e cmder (https://cmder.net/)

. ZLib (https://zlib.net/)

. The Battle of Wesnoth 1.14.12 (https://www.wesnoth.org/)

https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://developer.microsoft.com/en-us/microsoft-edge/tools/vms/
https://developer.microsoft.com/en-us/microsoft-edge/tools/vms/
https://developer.microsoft.com/en-us/microsoft-edge/tools/vms/
https://cheatengine.org/
https://cheatengine.org/
https://x64dbg.com/
https://x64dbg.com/
https://www.wesnoth.org/
https://www.wesnoth.org/
https://visualstudio.microsoft.com/vs/community/
https://visualstudio.microsoft.com/vs/community/
https://visualstudio.microsoft.com/vs/community/
https://store.steampowered.com/app/370070/Wyrmsun
https://store.steampowered.com/app/370070/Wyrmsun
https://www.urbanterror.info/
https://www.urbanterror.info/
https://assault.cubers.net/
https://assault.cubers.net/
https://www.wireshark.org/
https://www.wireshark.org/
https://cmder.net/
https://cmder.net/
https://zlib.net/
https://zlib.net/
https://www.wesnoth.org/
https://www.wesnoth.org/

Part 1
Basics

1.1 Computer
Fundamentals

1.1.1 Computer Components

A typical computer has several connected components. Among the most important
are:

. Hard-drive

e RAM

e Video card

e Motherboard
« CPU

If you were to remove the side of a desktop computer, the parts might be placed in a
configuration like so:

. Hard drive

10

For our purposes, we will only briefly address the first four components, and then we
will focus on the CPU in the next section:

. Hard-drives are responsible for storing large files, such as photos, executables,
or system files.

* RAM holds data that needs to be accessed quickly. Data is loaded into RAM
from the hard-drive.

e Video cards are responsible for displaying graphics to the monitor.

* Motherboards tie all these components together and allow them to
communicate.

1.1.2 The CPU

The CPU is the brain of the computer. It is responsible for executing instructions. These

instructions are simplistic and vary depending on the architecture. For example, an

instruction might add two numbers together. To speed up execution time, the CPU has

several special areas where it can store and modify data. These are called registers.

Registers

The current instruction eax
being executed ebx

ecx
edx
edi
esi
ebp
esp

add eax, 2

11

1.1.3 Instructions

All computer programs are made up of a series of instructions. As we discussed above,
an instruction is simplistic and typically only does one thing. For example, the following
are some of the instructions found in most architectures:

e Add two numbers.

e Subtract two numbers.

» Compare two numbers.

. Move a number into a section of memory (RAM).
 Go to another section of code.

Computer programs are developed from these simple instructions combined together.
For example, a simple calculator might look like:

mov eax, 5
mov ebx, 4
add eax, ebx

The first instruction (mov) moves the value of 5 into the register eax. The second
moves the value of 4 into the register ebx. The add instruction then adds eax and ebx
and places the result back into eax.

1.1.4 Computer Programs

Computer programs are collections of instructions. Programs are responsible for
receiving a value (the input) and then producing a value (the output) based on the
received value.

For example, one simple program could take a number as the input, increase the
number by 1, and then move it into an output. It might look like:

mov eax, input
add eax, 1
mov output, eax

12

A more complex program would have many of these simple programs "inside" of it. In
this context, these simple internal programs are called functions. Functions, just like
programs, take an input and produce an output. For example, we could make our
previous program a function that does the same thing. It might look like:

function add(input):
mov eax, input
add eax, 1
mov output, eax

We could also make another function that does a similar operation. For example, we
could write a function to decrease a number by 1:

function subtract(input):
mov eax, input
sub eax, 1
mov output, eax

These two functions (add and subtract) can then be used to create a more complex
program. This new program will take a number and either increment or decrement it. It
will take two inputs:

1. A number
2. A mathematical operation, in this case, add (+) or subtract (-)

This new program will be longer and have two different ways it can execute. These will
be explained after the code:

function add(input):
mov eax, input
add eax, 1
mov output, eax

function subtract(input):
mov eax, 1lnput
sub eax, 1
mov output, eax

cmp operation, '-

13

je subtract_number
add(number)
exit

subtract_number:
subtract(number)
exit

This code has two functions at the top. Like we discussed, these take an input and then
either add or subtract 1 from the input to produce the output. The emp instruction
compares two values. In this case, it is comparing the operation type received as input
and a value coded into the program, -. If these values are equal, we go to (or jump to)
another section of code (je = jump if equal).

If the operation is equal to -, we go to code that subtracts 1 from the number.
Otherwise, we continue the program and add 1 to the number before exiting.

Comparing numbers and then jumping to different code depending on their value is
known as branching. Branching is a key component of designing complex programs
that can react to different input. For example, a game will often have a branch for each
direction a player can move in.

1.1.5 Binary, Decimal, and Hexadecimal

Fundamentally, CPU’s are circuits. Circuits either have electricity flowing through them
(on) or they do not (off). These two states can be represented by a binary (or base-2)
numeral system. In a base-2 system, you have two possible values: 0 and 1. An
example binary number is 1101.

We are familiar with a decimal (or base-10) numeral system, which has 10 possible
values: 0, 1, 2, 3,4, 5, 6,7, 8, and 9. An example decimal number is 126. This number
can be represented in a more explicit format as:

(1*10%) + (2* 10" + (6% 10%)

We can represent the binary number above (1101) in the same format. However, we will
replace the 10's with 2's, as we are switching from a base-10 to base-2 system:

(1%23) + (1%2%) + (0*21) + (1 *2%)

14

Binary numbers can quickly become unwieldy when they need to represent larger
values. For example, the binary representation for the decimal number 250 is
11111010.

To represent these larger binary numbers, hexadecimal (base-16) numbers are
commonly used in computing. Hexadecimal numbers are usually prefixed with the
identifier @x and have sixteen possible values: 0, 1, 2, 3,4, 5,6,7,8,9,A,B,C, D, E,
and F. An example hexadecimal number is @xA1D.

1.1.6 Programming Languages

Instructions are represented as numbers, like all other data on a computer. These
numbers are known as operation codes, often shortened to opcodes. Opcodes vary by
architecture. The CPU knows each opcode and what it needs to do when encountering
each one. Opcodes are commonly represented in hexadecimal format. For example, if
an Intel CPU encounters a @xE9, it knows that it needs to execute a jmp (jump)
instruction.

Early computers required programs to be written in opcodes. This is obviously hard to
do, especially for more complex programs. Variants of an assembly language were then
adopted, which allowed writing of instructions. They look similar to the examples we
wrote above. Assembly language is easier to read than just opcodes, but it is still hard
to develop complex programs in.

To improve the development experience, several higher-level languages were
developed, such as FORTRAN, C, and C++. These languages are easy to read and
introduced flow-control operations like if and else conditionals. For example, the
following is our increment/decrement program in C. In C, an int refers to an integer, or
a whole number (-1, 0, 1, or 2 are examples).

int add(int input) {
return input + 1;

}

int subtract(int input) {
return input - 1;

}

if(operation == '-') {
subtract(number);

15

}

else {
add(number);

}

All these higher-level languages are compiled down to assembly. A traditional
assembler then turns that assembly into opcodes that the CPU can understand.

1.1.7 Operating Systems

Writing programs to communicate with hardware is a time-consuming and difficult
process. To execute our increment/decrement program, we would also have to write
code to handle keystrokes from a keyboard, display graphics to the monitor, build out
character sets so we could represent letters and numbers, and communicate with the
RAM and the hard-drive. To make it easier to develop programs, operating systems
were created. These contain code that already can handle these hardware functions.
They also have several standard functions that are commonly used, such as copying
data from one location to another.

The three main operating systems still in use today consist of Windows, Linux, and
MacOS. All of these have different libraries and methods to communicate with the
hardware. This is why programs written for Windows do not work on Linux.

1.1.8 Applications

Operating systems need a way to determine how to handle data when a user selects it.
If the data is a photo, the operating system wants to bring up a specific application
(like Paint) to view the photo. Likewise, if the data is an application itself, the operating
system needs to pass it to the CPU to execute.

Each operating system handles executing uniquely. In Linux, a special executable
permission is set on a normal file. In Windows, applications are formatted in a special
way that Windows knows how to parse. This is referred to as the PE, or Portable
Executable, format. The PE format has several sections, such as the .text section for
holding program code, and the .data section for holding variables.

16

1.1.9 Games

With all of that out of the way, we can finally discuss games. Games are simply
applications. On Windows, they are formatted in a PE format, identical to any other
application. They contain a .text section that holds program code, made up of
opcodes. These opcodes are then executed by the CPU, and the operating system
displays the resulting graphics and handles input, like key presses.

17

1.2 Game
Fundamentals

1.2.1 Parts of a Game

While games are applications, they are complex and made up of several parts. Some of
these include:

» Graphics
e Sounds
* Input

e Physics

Game logic

Due to each part's complexity, most games use external functions for these parts.
These external functions are combined into what is called a library. Libraries are then
used by other programs to reduce the amount of code written. For example, to draw
images and shapes to a screen, most games use either the DirectX or OpenGL library.

For some types of hacks, it is important to identify the libraries being used. A wallhack
is a type of hack that allows the hacker to see other players through solid walls. One
method of programming a wallhack is modifying the game’s graphics library. Both
OpenGL and DirectX are vulnerable to this type of hack, but each requires a different
approach.

For most hacks, we will be modifying the game logic. This is the section of instructions
responsible for how the game plays. For example, the game logic will control how high
a character jumps or how much money the player receives. By changing this code, we
can potentially jump as high as we want or gain an infinite amount of money.

18

1.2.2 Game Structure

Game logic is made up of instructions, like all computer code. Due to the complexity of
games, they are often written in a high-level language and compiled. Understanding
the general structure of the original code is often required for more complex hacks.

Most games have two major functions:

* Setup
* Main Loop

The setup function is executed when the game is first started. It is responsible for
loading images, sounds, and other large files from the hard-drive and placing them in
RAM. The main loop is a special type of function that runs forever until the player quits.
It is responsible for handling input, playing sounds, and updating the screen, among
other things. An example main loop might look like:

function main_loop() {
handle_input();
update_score();
play_sound_effects();
draw_screen();

All of these functions in turn call other functions. For example, the handle_input
function might look like:

function handle_input() {
if(keydown == LEFT) {
update_player_position(GO_LEFT);
ks
else if(keydown == RIGHT) {
update_player_position(GO_RIGHT);
ks

Every game is programmed differently. Some games might prioritize updating graphics
before handling input. However, all games have a main loop of some sort.

19

1.2.3 Data and Classes

Any data that can be updated in a game is stored in a variable. This includes things like
a player's score, position, or money. These variables are declared in the code. An
example variable definition in C might look like:

int money = 0;

This code would declare the money variable as an integer. Like we learned in the last
chapter, integer values in C are whole numbers (like 1, 2, or 3). Imagine if we had to
track the money for several players. One way to do this would be to have several
declarations, like so:

int moneyl
int money?2
int money3
int money4

Il
e e e

I
(SRR OS]

- e

One downside to this approach is that it is hard to maintain as the game gets larger
and more complex. For example, to write code that increases every player's money by
1, we would have to manually update each variable:

function increase_money() {
moneyl = moneyl + 1;
moneyZ2 = money2 + 1;

If we added another player, we would have to go and update every section of code
that altered the players' money. A better approach is to declare these values in a list.
We can then use an instruction known as a loop to go through every item in the list.
This is known as iteration. In C, lists are commonly implemented using what is known as
an array. For our purposes, you can assume lists and arrays are synonymous. One type
of loop in C is known as a for loop. For loops are divided into three segments: the
starting value, the ending value, and how to update the value after each iteration. An
example of the previous code might be written like:

20

int money[10] = { @ };
int current_players = 4;

function increase_money() {
for(int 1 = 0; 1 < current_players; i++) {
money[i] = money[i] + 1;

}

We now would only have to update the current_players variable to add support for
another player.

To make it easier to develop complex applications, developers often use a
programming model known as object oriented programming, or OOP. In OOP,
variables and functions are grouped together into collections called classes. Classes are
usually self-contained. For example, many games will have a Player class. This class will
contain several variables like the player's position, name, or money. These variables
inside the class are known as members. Classes will also contain functions to modify
these members. One example of a Player class might look like:

class Player {
int money;
string name;

function increase_money() {
money = money + 1;

}

Games will often contain lists of classes. For example, the game Quake 3 has an array
of all the players currently connected to a server. Each player has their own Player class
in the game. To calculate the score screen, the game will go over every player in the list
and look at the amount of kills they have.

1.2.4 Memory

Games have a lot of large resources, like images and sounds. These must be loaded
from the hard-drive, usually in the game's setup phase. Once loaded, they are placed

21

in RAM, along with the game's code and data. Because games are so large, they must
constantly load different data from the RAM into registers to operate on. This loading is
typically done by a mov command. This command will move a section of memory into
a register. Our increase_money example function executed by the CPU might look like:

function increase_money:
mov eax, 0x12345678
add eax, 1
mov ©0x12345678, eax

In this example, we use @x12345678 as the location in RAM of the player's money.
Most games will have this structure but a different location. For more complex games,
these locations will be based on other locations. If our game had a Player class, the
increase_money code executed by the CPU would need to use the Player’s class
location to retrieve the money.

function increase_money:
mov ebx, 0x12345670
mov eax, ebx + 8
add eax, 1
mov ebx+8, eax

In this case, the CPU had to offset the money's location based on the location of the
Player class.

1.2.5 Multiplayer Clients

Multiplayer games allow multiple players to interact with each other. To allow this,
multiplayer games make use of clients and servers. An example of the client-server
model is shown below:

Client +— Client

—

\
-t

—-

Client Server -— Client

Client — - | Client 22

Clients represent each player’s copy of the game and contain all the information
regarding the local game. For example, each client will contain that player’s money.
When a player causes an action to change their money, the client is responsible for
sending this update to the server.

Information can also be sent in both directions. An example of this is player movement.
One client will tell the server that the player has moved their position. The server will
then tell all other clients to update their associated positions for the moved client.

1.2.6 Multiplayer Servers

While the client represents each player's copy of the game, the server ensures that all
the connected clients are playing the same copy of the game. Servers will often restrict
what changes they accept from clients. For example, imagine we wrote a hack to
change our money in a game. If it is a multiplayer game, the server will reject our
changes. This is why single-player hacks will often not work in multiplayer.

We will discuss multiplayer fundamentals further in a future chapter.

23

1.3 Hacking

Fundamentals
1.3.1 Hacking Steps

All hacking consists of modifying memory in a game. Writing any hack involves four
main steps:

Identify what you want to change.
Understand what memory you need to locate.
Locate that memory in the game.

Change that memory.

AW N =

These steps apply for any hack, regardless of the complexity.

1.3.2 ldentify

The first step for any hack is to identify what you want to do. Different hacks will require
different approaches. For example, modifying a player's money will require a memory
modification of a variable, whereas seeing other players through walls will require a
memory modification of the game's code.

1.3.3 Understand

To modify memory, we need to locate it. Before we attempt to locate it, we need to
understand what memory we need to locate. In some cases, the memory you want to
modify will be a variable. In other cases, you will want to modify large sections of code.
There are three main types of modifications:

e Variables, like modifying the value of a player's money
e Code, like modifying how walls are drawn
« Files, like modifying the saved items in your inventory

24

1.3.4 Locate

Once you know what you want to change and understand where to look, you can start
looking for it. For some hacks, this may involve searching memory with a tool called a
memory scanner. For others, it may involve looking through the game's code using a
tool called a debugger. Depending on the game and approach, this can be a time-
consuming process.

1.3.5 Change

After you have located the memory, the last step is to change it. Initially, this will mean
using a memory scanner or debugger to manually modify the memory. Once you have
verified that this works, you can write a program to automatically change it for you.

25

1.4 Setting Up a Lab
VM

1.4.1 Overview

When doing any sort of hacking, it's best practice to separate your personal and
hacking machines. One easy way to achieve this is using a virtual machine, or VM. In
this chapter, we will set up a game hacking VM running Windows 10. This will be the
environment we use for all the other chapters as well.

Due to the hardware requirements of games, you will often find that it will be
impossible to run a certain game in a VM. In these cases, one option is to create
another section on your hard-drive known as a partition. You can then install Windows
on this separate partition and reserve it for game hacking.

1.4.2 VirtualBox

For this book, we will be using a virtual machine hypervisor known as VirtualBox. This
software allows you to run and manage virtual machines. You can download it here.

1.4.3 Virtual Machine

Next, we need a virtual machine. Since most games are released for Windows, we will
be using a Windows 10 VM. Microsoft releases free Windows 10 VMs for testing old
versions of Internet Explorer. These are completely legal but have a 90-day limit for
activation. For our purposes, we will download a VirtualBox image. You can download
the image here. Be aware, these VMs are about 7GB in size. Once the image is
downloaded, extract the OVF file from the archive. VirtualBox uses extensions of OVA
and OVF for images. These images contain a saved copy of a pre-configured machine.

Once we set up our machine, we will create a snapshot of it. This will allow us to throw
out the old machine and create a new copy when it expires. Never keep notes or
anything personal on your VM.

26

https://www.virtualbox.org/wiki/Downloads
https://developer.microsoft.com/en-us/microsoft-edge/tools/vms/

Open VirtualBox and import the downloaded OVF. Keep all the options as the default.

AV s ™ [
H * H Tools gE LR} ibwlf l—L_l
: Bport ;. New AQl

Once the VM is imported, start it up. Windows 10 will start and send you to a login
screen. The password for the user is “PasswOrd!”, without the quotes.

1.4.4 Tools

We will use a Boxstarter script to install some game hacking tools. Boxstarter is a set of
utilities that allows you to script and recreate installations. In this case, we will use it to

install a memory searcher and debugger. Within your VM, open up Powershell and run
the following two commands:

. { iwr -useb https://boxstarter.org/bootstrapper.psl } | 1iex;
Get-Boxstarter -Force

Install-BoxstarterPackage -PackageName https://
raw.githubusercontent.com/GameHackingAcademy/vmsetup/master/
vmsetup.txt -DisableReboots

The vmsetup.txt file is also available in Appendix A. If using the local version, run the
following second command instead of the version above:

Install-BoxstarterPackage -PackageName C:
\location\of\vmsetup.txt -DisableReboots

The first command installs BoxStarter and is taken from their website. The second
command is a setup script that enables some folder options and installs three
programs:

1. Cheat Engine, a memory scanner
2. x64dbg, a debugger
3. Chocolatey, a package manager

As you discover more tools, you should create your own script and add them.

27

1.4.5 Cloning VMs

Now that we have our environment set up, we will create a clone. This will allow us to
recreate our VM with all the tools already installed. Power off the VM completely and
then choose Export to OCI. Keep all the defaults and begin the export.

§ Export to OCI...
Jf wm
roup tin
% Dev Start p al
i @ S Pause
Reset S
! @I S
Discard Saved State... m
rl IE11 Show Log... L
M BS Refresh so:|
€3] blac Show in Finder ;:r
A \ (1S Create Alias on Desktop
m’. MSE Sort Yy
W s S—
0] @) powered Off 0= Video Memc
Graphics Co
Remote Des

This will create an OVA, similar to the OVF we initially downloaded. If we ever corrupt
our environment, we can simply delete it and import this new OVA. It will already have

all of our tools installed, so we don't need to waste time reinstalling them.

28

1.5 Memory Hack

1.5.1 Target

For our first hack, we will be targeting a game called "The Battle for Wesnoth”,
shortened to Wesnoth. This is a free, open-source game that has no anti-cheating
mechanisms in place. Most of the chapters in this book will specifically target version
1.14.9. To install it on our VM, open up Powershell as an administrator and run the
following command:

choco install wesnoth --version=1.14.9 -y

This will use Chocolatey to install The Battle for Wesnoth. Once the installation finishes,
open the game and verify that it works. Then, go into the Preferences menu and
change the game's video mode to Windowed. Finally, play the tutorial mission to learn
about how the game works.

29

1.5.2 ldentify

Our goal for this hack is to change our gold. Players use gold to buy troops in the
game, so the more gold we have, the more troops we can buy. We will accomplish this
by using a tool called Cheat Engine, which allows us to scan and modify game memory.
To do that, we will use the steps we learned in Chapter 1.3.

Players only receive gold while playing a scenario. To create a scenario, select
Multiplayer and then Local Game.

7

>

& u\-\' ?
02 skl ol
Theencing ng tact

Keep the defaults for the rest of the settings and start the game.

30

1.5.3 Understand

In this game, a player's gold is stored in a variable. This variable is referenced by the
code of the game.

O 1y2e hére 10 e

To successfully complete our hack, we will need to find where this variable is stored in
memory and change its value. Since we are dealing with a variable, we will use a
memory scanner to find it.

1.5.4 Locate

Our next step is to locate the memory holding our gold value. We will start by opening
Cheat Engine and attaching it to Wesnoth. In this tool, click on the icon in the top-left
that looks like a computer with a magnifying glass.

31

P Prvarm leadad

SadAdormatiacaty,

ASVIRRG L poon

In the window that appears, choose the Wesnoth process.

M Process Selactrd

& brecan i
(TN
sppledtors hasowar Wesdeon
- et "'.A'—:-w‘. e’ o

Own | 380 <fTCe

OO 1AL Muerm et l”

DR 1SCS-Mcono® it

L T N

WA e

STEITIROT AN Fove el

[I] LancH AT A3 Ta Maruen

s ddvpee B e

hNowok

Modn v wd Syl L T

32

Memory scanners allow you to scan for a value in the game's memory. In the example
game, the player has 75 gold, so that is what we will search for. Place your gold value
in the Value box and select New Scan. Several thousand results will come back.

ELNtln:-'l"
e Ede Tibde DD

[;] 4 H QO RC - vesoth e
'

He 8

xan Typt Buct Wiue v Laa feerrads

'-NR‘,-(-Q i Byoe er.‘-

JLompareto hrt scan)
JUnvardomcer

MOy Y S8 DA
- Evabis Spredhuch

A Addras Nenudly

O yoe here 10 sedCh

Initial scans in any memory scanner will return thousands of results. This is because
games are complex and thousands of section of memory have the same value as our
gold. These other sections could be variables like timers, the opponent's gold, or
character health. Our goal when using a memory scanner is to filter these results down
to one or two values that we can then manually test. To do this, we will modify our gold
value in the game and then perform another scan using the Next Scan button. The next
scan operation will only bring back results that were previously our initial value, in this
case, /5.

Recruit a unit of troops in the game and look at your new gold value. Place this new

value in the Value box and select Next Scan. In the example below, we recruited a unit
for 17 gold, leaving us with 58 gold.

33

€ Crant lrgme 12

He M e U

3 b 1

smnd 100

o voruheoe

JAarfciran
L

AN Ad wie Mo reety

The result of this second scan is only one value.
confirm that in the next step.

€ Cant frngina M0
e Cér W M0
E = N
a0

ASTVIR

e]

Wew XN ret M

Lase Ypw b has L inafarmats
et
W e d e —

LltCermpen ol —
Jatirdernce

Movvay S an (pticc .
- - LA DR

NN oy 1

A AT s o Wewiady

34

1.5.5 Change

In Cheat Engine, you double-click on a memory location to move it to the bottom box
on the screen. This bottom block allows you to edit the value stored in the memory
location. Double-click on your result to bring it to the bottom box. Next, double-click
on the value to bring up a box that will ask you for the new value. Type something
large in there, like 200.

ELMRIh;--l‘:
e Ede Tibde DD Helg

000N X rvevwh e

New can Not San
e
He |58
San Type Bact Vdue v Laa foerrada
Voo Tyyw | Byt) et
[1Comoarets fint wan
Lneardorcer
Mermary S.on Opteons ~
Erabd: Jprodiwoh
(2" Add Addras Nanudly
. AmIes Type Vahe
‘ 04N A Do 200
\
in o 1y2& hére 10 sexch o = ™ ﬂ - 2 v

With the value changed, go back to the game. You should see your gold refresh to
200. Recruit a ton of units to confirm that your change was successful.

35

Toe Bettiefor Wemomh - 1N

O Tyoe here 10 sexch

36

Part 2
Debugging &
Reversing

2.1 Debugging
Fundamentals

2.1.1 Goals

In our previous chapter, we hacked our gold by modifying a variable in memory.
Memory modification like this is powerful, but it also has limitations. More complex
hacks will often require you to modify the game's code. For example, imagine if we
wanted to create a hack that would allow us to recruit units for no gold. One way to do
this would be to constantly monitor our gold and manually increase it whenever we
recruited a unit. This would also require you to constantly look for any new units added
to the game and that unit's cost. An easier approach would be to modify the game's
code to never decrease a player's money when recruiting.

Viewing a game's code as it is running is known as debugging. Understanding and
modifying that code to do what you want is known as reversing. You do not have to
debug a game to reverse it, but it is very helpful if you can.

2.1.2 Tools Involved

To debug a game, you use a tool known as a debugger. The first step in debugging is
"attaching" the debugger to the game you want to debug. Once it's attached, you are
able to view the game's code in memory. You are also able to pause execution of the
game, change the game's code, and modify registers. We will see examples of these
actions in future chapters.

Debuggers can cause unintended side-effects. For example, if you change the game's
code incorrectly, the game can crash. Depending on the game, this can freeze your
computer's display. This is another reason to always separate your hacking machine
from your personal machine.

There are many debuggers, but some well-known ones include IDA and gdb. Other
debuggers, like WinDbg and OllyDbg, are often mentioned but no longer maintained.
In this series, we will be using an open-source debugger named x64dbg. Like any other

38

tool, it's more important to know the fundamentals than the tool. The same approach
we will learn while using x64dbg can be applied to any debugger.

2.1.3 Disassembly and Debugging

After attaching a debugger to a game, the debugger will display the game's code.
However, this is not the original game's code. Like we discussed in the first chapter,
games are usually programmed in a high-level language, like C++. However, the
executable running on our computer only contains the opcodes for the CPU to
execute. This lack of the original code is what makes reversing difficult. Often games
will contain thousands of these opcodes.

When assembling a program, each line of assembly code is converted to an opcode.
Disassembly is the process in which opcodes are converted back to assembly. Normally
disassembly and debugging are used interchangeably, especially when reversing a
game. However, they can be done separately. It is possible to disassemble a program
without debugging it. This is known as static analysis and is commonly done when
reversing malware. It is also possible to debug a program without disassembling it. A
common example of this would be debugging a program that you have written. In this
case, you have the original code and the disassembly is unneeded.

It is possible to partially recreate the original high-level code from the disassembly. This
is known as decompiling. However, disassembly is always representative of the code
executing, while decompiling is not. Decompilers are often forced to guess at the
original structure of the code. While these tools can be helpful, they can also lead you
down false paths. In this book, we will not cover decompiling.

2.1.4 Assembly

When debugging and reversing a game, you will mainly be dealing with assembly.
Assembly is similar to the first language we covered in Chapter 1.1. Each instruction in
assembly does one thing, such as add or subtract. It is not necessary to know every
assembly instruction to reverse a game.

While it may appear daunting, any assembly code can be understood by going
through it one instruction at a time. When debugging, this is known as stepping
through the disassembly. Often there are many instructions in a game that are not
critical to understand while reversing. For example, the CPU has to do several
instructions when adding numbers that have decimal values. If we are only interested in

39

the result of this addition, we can skip over many of these instructions. Understanding
which instructions can be skipped comes with experience.

40

2.2 Reversing
Fundamentals

2.2.1 Context

The process of reversing a game can seem overwhelming the first time you attach a
debugger to a game. The best way to start reversing a game is to figure out what you
want to look at and then find where it is. Once you establish this context, you can step
through only those instructions that actually matter to you.

There are many ways to establish a context. In some cases, you may want to search for
text that is displayed when the game does a certain action. Any locations that load this
text must eventually be related to the action that you are interested in. In other cases,
you can use memory addresses found in the memory editor to find the code that you
are interested in. Regardless of which approach you take, you will use a breakpoint.

2.2.2 Breakpoints

Breakpoints allow the debugger to pause execution of the game at a specific
instruction. With the game paused, you can then step through individual instructions
and view the game's memory. You can set breakpoints on any type of memory. This
includes memory found using a memory scanner.

Breakpoints can be set to trigger both non-conditionally and conditionally. Conditional
breakpoints will only trigger if their conditions are met. These conditions can be things
like registers having a certain value or the memory (that the breakpoint is set on)
changing. When a breakpoint is triggered, it's also known as popping.

2.2.3 Memory Breakpoints

The best way to illustrate the use of breakpoints is through an example. In this section,
we will examine how a memory breakpoint can be used to establish a context.

41

Back in Chapter 1.5, we found the memory location of our gold. We can use this
memory location to find the game logic responsible for lowering our gold. We do this
by setting a conditional breakpoint on the memory location of our gold and then going
into the game to recruit a unit. When we recruit the unit, the breakpoint will pop and
execution will be paused at the function responsible for lowering the player's gold. This
function may look something like below, with the line in blue representing our paused
location.

mov eax, dword ptr ds:[0x05500ABC]
mov ebx, dword ptr ds:[0x12345678]
sub eax, ebx
mov dword ptr ds:[@x05500ABC], eax
mov esi, ebx

The first instruction moves the value stored at @x@5500ABC into the register eax. This
value was the location we found in our previous chapter for gold. The next instruction
moves a hypothetical value for the unit's cost into the register ebx. The game then
subtracts the unit's cost from our gold value. Our paused location is responsible for
moving the new value of gold back into the memory location that stores our gold
value.

You may notice that the game did not pause on the subtraction operation. This is
because this operation only modifies the value in the register and not the actual value
of the memory we set the breakpoint on. Breakpoints will always pause on the
instruction immediately after the affected memory.

2.2.4 Code Breakpoints

Sometimes it may be difficult or impossible to find a memory value to set a breakpoint
on. In these cases, you can set a breakpoint on a section of code. A common example
of this is setting a breakpoint on a text reference and then using that to find the top-
level function we are interested in.

Consider a game for which we want to write a wallhack. The game's main loop may
look something like:

void main_loop(){
draw_playersQ);
draw_walls(Q);

42

And the game's draw_wall function may look something like:

void draw_wall(){
bool succeeded = load_texture("wall_texture");
if(succeeded == false){
print_error(Q);

}

Finally, the print_error function may look something like:

void print_error(){
print_to_log("Couldn't find wall texture");
}

One method of writing a wallhack is to remove this game's draw_wall function. Since
there is no variable to use as a memory breakpoint, we will instead use a code
breakpoint.

Debuggers allow you to view all the text in a game and all the locations that use that
text. For example, with a debugger, we could find the Couldn't find wall texture text
and where it is referenced. It may look something like:

mov eax, dword ptr ds:[0x23456789]
push eax
call print_to_log

This section of code is responsible for loading the string into a register and then calling
the print_to_log function. By setting a breakpoint on this code and then finding a
missing texture in the game, our breakpoint would pop. We could then continue to
step through the code until it returned us to the function that called this code. This is
known as stepping out of a function. After we have stepped out, we would be in the
draw_wall function and could then remove the function.

43

2.2.5 The nop Instruction

A nop (opcode 0x90) stands for no operation. When encountering this instruction, a

CPU will do nothing and continue on to the next instruction. This behavior can be used

to modify game logic.

For example, in Section 2.3.3 above, we found the portion of code responsible for
subtracting our gold. The code looked like:

mov eax, dword ptr ds:[0x05500ABC]
mov ebx, dword ptr ds:[0x12345678]
sub eax, ebx

mov dword ptr ds:[@x@5500ABC], eax

By replacing the sub operation with a nop, the game will no longer subtract our gold.

44

2.3 Changing Game
Code

2.3.1 Target

Our target in this chapter will be Wesnoth 1.14.9.

2.3.2 |dentify

Our goal in this chapter is to change Wesnoth's code so that recruiting units does not
decrease our gold.

2.3.3 Understand

To modify the game's code, we will need to use a debugger. To locate the game code
to modify, we will set a breakpoint on our gold address and then recruit a unit. Our
debugger will pop at the code responsible for decreasing our gold. We can then nop
out the sub instruction.

2.3.4 Locating Gold

Our first step is opening up Wesnoth and creating a local game. Then you can follow
the steps in Chapter 1.5 to find your gold address. Due to a process called Dynamic
Memory Allocation (or DMA), it will be at a different address than before. We will cover
DMA in a future chapter. Once you have found your new gold address, close down
Cheat Engine but keep Wesnoth open. In this chapter, we will use the value of
0x051D875C as our gold address.

45

2.3.5 Attaching the Debugger

Next, start the 32-bit version of x64dbg. It can be found at C:\ProgramData\chocolatey
\lib\x64dbg.portable\tools\release\x32\x32dbg.exe. Once started, open the File menu

and choose Attach.

Al bg
Sic Yow Jcbuz Trace Dugics Fovourtes Optio
. Cpzn F3 F <2 B
bes ® br
¥ At Alb—3 T
Dezach Ctrl+he==2

L rport zatsbace

3. Cxport —ab=hase

g0 Pzldh e Cll+P

@ Chongz Czmmand Lme

5‘. Reskert =5 A=mi-

O Bt M=

In the attach dialog that opens up, choose the Wesnoth process and hit Attach. This
will attach our debugger to the Wesnoth process.

W A=ses

7

~n | W

J Tl as

LT

IATTECADT memanti
ATTCARER Nnab s sws

Tam Zas<is ter asnscth - 1.94.97
AT : 733R337E

CIAFraacen Frlse (5251530t For pans
Ciulmare, TElmar fapfiata, ecal s Marranat

. LR Rl 3 T

Vg poera Tra camer Betes =3 el ek, [

46

Upon attaching, x64dbg will pop in a module called ntdll.dll and display a lot of
information.

B cancth an . B0 100, Mokl radl 48 . Thasd (52 . g - n *
Fle few Debug Trae Mugrs Freousies Opiors Heb feb 20 00
AR A ERTIEEN FEEE S XA N |

Smbok 2 Sarce S Refeewces el

[[3)]
. o 1.3 ~ Ivide iy
: 4 E "‘;; 3 22 EROO
- e qned 2000000
- c 13 U <IEQ 1 1L DDIVIR RO TR $8
e C 1023 Yom) <red1 1. 0bguiRmotelr ia
. C 3 .
. < 1=3 JAFFEFa
. e 103 raee) R e
. < 1=3 Tom) <r2d1 1. 0guiRmotelr sa
- e \ LA
. o 1=3 TORTAL maITRITR
. < M3
. T3 1= I VOO
M $R4C24 04 Y ex, wc pr ssaffespr 4] l‘“n Ty
. TEAk B4 06 e v iCme 43, £0 F L OF O
. re s l ausf)z Ty Fo TF¥ '
. I8 UFMFEF mu'n VtTertAlers: ® ¢ ¥
. 38 G1LO0M000
. 4 {2 2000 mtirror 0ON0OM (ERROR_SWCCERS)
. WAALe AR l-q 0; e d p T L3I0 | ALl U CORIOOM (ATATVE_ICCERN)
. A MFs
al v 3a3w 10 SUTALT <*0 W dei [*=azatec) AN arspot
. 2 4+ X 3¢ e "'0‘."(')
. 17332 on o-o'c ot g fziaance
. .’h! "(g:nli_'l k Jt&cwnnﬂ!uu
. e 0 e0x
. ST 10334000 va sasown d wb s Puiurico® -
<

AT TIA2TE a1 L@ i8I e 0T 8

I "\ . . ::.’,:. mn.::no):'
".uuobm O M L ALCE TF AL UL A CIFE TGI8 8. sk, - .. oA] g | Sn T
WPARAW c8 W 4 e 23 . NI = a1 GAP e, % . Ay ILFEFF 44
TOFFLI0 1K 0 20 ™ e F %A S0 30 20/Q8 C) ok ‘f, . of,\ ~
A2 Lo FES S AETE S 3 _Aa AL A » SRR WA v » e
".tu_\o) o 00 3 o |SCCaT X 00 2€ 20| & Ca 2 :-, :,\ e Froeeese | meat 1 . 7 7eism0n
ra TEEETEN 3 ¥ Wy ped—o—e
e liE3 u..u.R..s 79 fomnsw o aay 3V ,',:,}’,x’,
A ad o)l T TS - ‘; 23 . S 0t 20 22 . c"' W LFFF &
Twrises 08 O o8 o Tlh OF 0 OF co BuPriciasagw 4+ urs te karselld. N840i1Te Pras P94
PFF 1590 (08 20 OB o : Of 50 08 20/ L8 - T 76802 7)| resure TO keriel 2. 1840179 Fro ~
TLEE NN ‘u Ol T b A . > Wi 24 WS Tepv™ € b v - . -
Cowmand: | th =
| Pames | attach et sached [teme Wasted Debugorg: 2:00:002

Before we dive into reversing, let's quickly cover the major components in any
debugger. The highlighted section contains the code being executed. The dump
section directly below displays the memory of the application in its hexadecimal (hex)
and ASCII representation. To the right of the code section is a list of all registers and
their values. Below the registers is the application's stack.

In this chapter, we will only be using the code section and the dump section. For more
complex hacks, understanding all these sections will be necessary. Different debuggers
will always contain all of this information, but they will often arrange them in different
ways.

47

We are currently viewing the ntdll.dll module. This is not our target, but it's a common
module loaded into all Windows executables. To view the game's code, we need to
navigate to the Symbols tab and double-click on wesnoth.exe.

B wesreth e - PID: 100 - Module il - Theead (54« x:2dbg a3
Fle Vew Diug Teace Pgm Faounts Optors Melp et
VE 280 *THh 23 ta B iP5 08
o ®oxr g totes ® Bresigonts W peworyMap () Gl Stk = . oo ? Sevce Refer eors -
m_]gg.]g ~ ADIr b o 0r &1 — | S0
oleds.d v : =3 Nealer - Adr essd!
[l aleaurs . ald Tt T CryREA AU FACANT VT A
powrpro’.a1 1 40| Espore CryptiwmProvide sA
prefap) V) ‘4] SO Ty DTG M Ao
prapays dll 1 44| Espore CrypeRileasolontxt
L T e) . 5 o VEL T Navee
rpcrtd. o 1 4! Espore AdforiResour celow
rsaenn, 813 %ot RENOVE ONTRASOW (et v
a2 A Ermwrs fAANN e
92 vmge.) 10t M TocCmsale
2 mier. .8 1 Esport AreF 1 ToApt NS
ey et aN Lo T ANTacxantols
sechost dil ! Isco-t Cosesandie
shogre. i) tpors CImpar pasr 10gw
Shelll2 aMd 1 Isport CipyFilen
=N wapt a1l PO CTRATED I T RCTOryn N
sspiciy ald Isport Creatadirecioryw
et inpesfranewsrs., pors <r et
weErthase. oY st <
ugerkl. o i isgors <r
useresy dil Iscort cr
usssn.din 1 tazor <r
‘ Inport cr
version dill isgore <r
5 Isoort Celetelriticalseltion
wIse.n 3 A4 BRpOrS SRietet i
je. 0"} IOt Cevicelaconral
wisem.dll 1 Ispore Cuplicatesandlie
wisamtaic. d) Aot eMere rnical acciton
wirtypei. a1 1 4 Ispore fumSyitentecaletA
ws: 32,0 - 07T P11 eTIRETOSVS TNl Ime
<
Sewrcy Jroe hoe o ¢ RIRagex Seanchs |Tvoe heve o fiter rest ek L0
O LT L L e s T e p—————

Be symbols (oaded for Lomll 410
[YIA] Fhigping sea-—enish
VIBARILRER AT s 11 Te
Be symbals (oaded o
LYEAL TRipping sen—anistons PO
e avmbale Thaded far mesraue MY

CiNrogrelat e chomlatep Libondddg portable\ Soo s\ re.ease Il 1ymalis \props ys pib
sepeys pis

AL\ Py e @ g s e g

This will switch our view to the game's code and memory space.

2.3.6 Setting Up the Debugger

Certain default settings in x64dbg will make it pop when we do not want it to. To make
reversing in this chapter and future chapters easier, we will disable these settings.

In the top menu, choose Options -> Preferences.

48

THTau, 1TUJU ([DWILLTHITU v wvoo) - AJLUUB

1
T (2] shortcuts I
/ Customize menus
? Topmost Ctrl+F5

g Reload style.css
| 4 SetInitialization Script
+ | Import settings...

In the modal that opens, uncheck the TLS Callbacks option and select Save. This will
disable x64dbg from automatically popping when receiving a TLS callback.

o Settings X

Events Engine Exceptions Disasm GUI Misc

Break on:

e Breakpoint™ [] DLL Load

[] DLL Unload
Entry Breakpoint® [] Thread Start
[] DLL Entry [] Thread End
Attach Breakpoint [] pebug Strings

[] Thread Entry

49

2.3.7 Setting a Breakpoint

Next, we will set a breakpoint on our gold location. After we set this breakpoint, we will
go into Wesnoth and recruit a unit. Doing so will cause the breakpoint to pop and
pause execution at the location responsible for subtracting gold.

Right-click in the dump section and choose Go to -> Expression:

. 30 nov dword por dsileax],edx W Wekh DWORD 8 FS 0053
. €8 OSS8AND CANY owesnotA. sud 16850 8 DS 0028
. ALED O4alten: o1 oo dword per do:SR4MRDN) . ! Q Mocate Memory 3 £c oo3e
. T4 @ Je wesseth, 401100 a @® ’
. Jico BOF fAx fax M Criel
. $3C4 IC 403 e3> L o y
Pz < - e » i Fledffse Crieinftel
-t & 1 ~
- " Ar Tex » ¥ COxizfiege o ;
eXTI00403082 wasrOth, exe 3082 @482 O teteger » ® Peins r
—
wrn 10 nedll. Xl from nty
Bop1 PWomp? $owe) Wowods Wowes B wanch: eellecks bod ’ o ntd 98 IAY nt
dll . rlomsire
lores) | wex - - _JAKEX 1 B adtes d1}.7;098370
WFL000 T3 00 35 00 AR LA LE 8 ah i dh e | O AA LE 416 5. Ay, . . . pAyy
P00 28 00 2\ 0044 L4 55 F2 34 00 38 00/ £4 55 41 (, ", DA, 6, . Ayv 8 nooeo,
WF10:0 1€ 00) 00| EL LA J& SALC SL 00 (O LA L 24|« - YAyv... .0y 1 DTNy
.::1:)1 a }l 230 00|84 ER P T8 3000 3T 0o M ER P 0| :‘. : {‘ s
#F10:0 30 OO 3% 00| G4 ok | 3C 00 2t 0 QAL LL L ¥, ¥ NS 3 »
WF3010 20 an oolgh T 5a8 aA [" W I IT v o Ry Ay ”:‘Iff‘;.’ nedll. FIodee00
WF1040 20 s | QA LIk > TIN5 OCOCOCD)
FF30!0 28 o= 23 ool on *e o o8 o010 3 Ml cres s WWivusnes IV 0IFBFFS)
WF10M0 o6 OO o8 OO EQ - o |06 00 08 O i EE A coa DupViiuiasd™ ‘e 81 ™ ’
.ui:.--. .. o ‘1.-1 ry 4 ’e 1 2 ry o.': : FIese0i™yire wrne e ’
WFI0M0 QR L S8 L0 A Ll Il k|22 4 Al L i Teyv' . 5. 8.y wi<

In the dialog that opens, type in our gold address and hit OK.

€D Lrter exoression to follow in Dump... X

US1WE /¢

Correct expression! -> C51D375C

OK Cancel

The dump will then show the address we just typed in. The data displayed is in
hexadecimal format. In the target game, the player had 100 gold. 100 in hexadecimal
format is @x64. This is the value displayed in the dump.

50

I LLexli 00401052 wesnolh.exe: 31052 #452

@90ump1l YhDumwz AWDu 3 EWDumd EWDums % Wl kel Locek

Address ASCII

051D375C |64 §0 00 D084 SE 53 D1/00 CO 00 00[D20 OC 00 00|d.eee?5. . i vuuus
——o—e————a 7 2 2/00 CO 00 00|20 87 AD 0C|deeeCuauiiirnnnns
NN’/ 0 EM) UMD MR R EME EMY R LR 0 UMD ML Ll M) cemeeeme e
0S1D37BC|EC A8 DC 20 18C AB DC DD (38 AC DC 0P| D0 OC 00 00| " UseelU..mUi....
0£1D373C|CC 00 00 D0|0C 00 00 DD|9C £7 AD 08|32 87 4D OC| .uuuuas..
NSINAZAC|O0 00 NN N[0T 00 0N |8 E7 ED OD|4R 00 00 00| F.].4...
051D373C|4E 00 00 20|00 00 00 223(02 C0 00 00|J1L OC 00 00| Keweeuervrrs
051D37CC|CC 00 00 DO|14 00 00 D2D|00 CO 00 O0|DO OC 00 00| eeecenei st snnasns
051D37DC QL 25 SFE D0 (8L 20 CF DJD |88 24 ZE OD(D7 OC 00 003 .. I_.X§_.....
0S1D37EC|F4 87 ID 25|05 00 00 DJ|GE €F 72 74|68 00 00 00| Ocevese . MUILT...
051D377C |20 83 L0 02122 D= 04 77 /R0 L8 CL 0720 LC 27 0%f..a.. .w of.™".
— . oenn = — = . Pl N G — s o o — St -l
C:nm‘and:'

Right-click on the value and choose Breakpoint -> Hardware, Write -> DWORD. This
will set a conditional breakpoint on this memory address. The condition for popping is
any modification of the memory address.

.50 ol Lavel i MUV TOA UV W PRl 3. g=VE T2
. mp dward arr o dse [Pﬂ'(] L 8AY
=== 2 1vifyvale A jre mud11, 7708LA3E
@ int) o r
Drezhpoin , Harcviare, Accese L s

]
]
¥
i /2. FindPattern... CtlIE @ Harcware, wrt= ¥ e, B c20
| -
' i ll Fnd Keferencas “ul+ @, |larcware, Cxecute %, Word
] 1 —
o & Sync Atk =xvession
L ®, Memory, Acrass y % Daord
' & WetchDWORD 5 e o
b Menxx y, Recu chp 40J,cox
10 -g Alocctz Marery :
P — ® Memory, Vi b Ellebp-4cl, eax
" ' ey GO ’
P "-, Memory, Execate r
-1 & Hex » je nzdi1.7r03zB2F
ey ext ’
wrd pLr
Xx-€621021 [0 1Irtaga- »
BXt:T7030 | [loat »
¥oump1 [E Address e dWouws B wad 1t xluxds F
& Usascemdly | Asc1z |
. . D200 ug 00 o [.--.~\b
T [CESF VR TV TN S SR TR S () i 3 Y boolboocoo comoc
1DE77C(00 D20 00 OC (0D CO 02 00|20 00 OC 0J|CL 00 00 IO|.ueusrsnnnss -

With our breakpoint set, we will now resume execution of the program. This can be
done by pressing the Play button until the Paused status disappears and the game
resumes. You will have to do this several times due to the several breakpoints that
x64dbg automatically creates.

51

+ View Debug Trace

D E (= ¥

iccu ®eaph [

2.3.8 Locating Code

Once the game resumes, go back into Wesnoth and recruit a unit. You will notice that
Wesnoth will freeze due to our breakpoint popping and pausing execution. Navigate
back to x64dbg to see where it popped.

LU YH T WE THEH MO REN AR EBY

S o sopt A
:] Al w
- ED8S O&FOFFFF ea st 2F8 £
B 8A 01000000 mov edx,l €8
. 894424 04 mov dword ptr ss [c-n 4], cax fespeda):a”p £C
. BD85 1BFOFFFF lea ecax,dword Dtr $S leuc 2689
B 890424 nov dword ptr o r-,:- .ea\ ©
B 8995 BEFCFFFF dword ptr ss:febp-373),edx ££
B E8 936AFIFF “ msnoth.sub 763“0: Es
. > BBSS TCFCFFFF mov eax,dword ptr ss:febp-384) ES
. 89 01000000 MOV ecx,l {34]
. 890424 mov dword ptr ss le;:s].ca-
. 898D BEFCFFFF mov dword ptr ss:febp-37a), ecx £1
. EDED FOFCFFFF Tea ecx,dword otr ss:fjedp-3109
B E8 A4F58900 ANl <wesnoth, suo.xoec;oc» £F
. BBSD FOFCFFFF MOV ecx,0word ptr ss:fedp-310) ZE
. S3EC 04 Sub esp,4
. 85C9 TeST <X, ecx e
. OF84 90180000 j¢ wesnoth, 7CEGSD &£
B > 88 08000000 mOV eax,d 8:"\v'
. C70424 00000000 mov dword ptr s i esp), Le
. 5985 GSFCFFEF mov Oword ptr ss:febp- 37 8], eax Le
. €8 FCO2F9FF ANl <wesnoth, sub.’uum
. £14 S085 FOFCFPFFF ®mOV ¢ax,0word ptr sfedp-3109 Gs
. LA $38C 04 Sub esp,4 ES
. 85Co TEST cax,eax cs
. 74 10 je wesnoth, 7CCESL
. 21 890424 mov dword ptr ss:fesp),eax [
. £24 31C0 NOP eax,eax . Def
< >
Dyte ptr [eDp~385)=[017ED2DT =1 2:
3:

The highlighted EIP represents the current location of execution within the program.
EIP stands for Extended Instruction Pointer and is a special register used by programs
to understand the current execution location.

52

From our last chapter, we know that conditional breakpoints are triggered after the
operation that affected the memory in question. Scroll up in the code window to see
the previous instructions.

Bou ®cwh g Notes ® Breskponts W MemoryMap () CalStack % SBM Sorpt
- > 6985 SOFCFEFF 700200¢ 1mul eax,oword ptr : feby 2 B
o 8890 4CFCFFFF mov ebx,dword ptr ss:febp 3
o 01D8 add ecax,ebx
- 89C2 MmOV edx,eax
- B985 _JBECFFFF oy alied
© 8845 18 mov eax,dword ptr :febp+l
. 2942 04 sub Mrd ptr ds:f[edx:4]),ecax
T - ¢ ECEE e Rohn
° 74 23 j¢ wesnoth. 7CCeCD
. 8085 OBFOFFFF lea cax,oword ptr ss:febp-2F5)
- Aa A2 DA - .

The highlighted sub instruction was responsible for modifying our gold value. As we
remember from previous chapters, sub stands for subtract and is responsible for
subtracting two numbers. In this case, it is subtracting the value held in the memory
location stored in edx + 4 and eax. The exact specifics of these values are not
necessary to know now. All we need to know is that this operation is affecting our gold
in some way.

2.3.9 Change

Finally, we will change this code and finish our hack. To do this, we will replace the sub
instruction with the nop instruction. This will replace the subtraction with an operation
that does nothing. As a result, our gold will no longer decrease. Luckily, x64dbg
contains a built-in way to automatically nop out an instruction. Right-click on the line
with the subtract instruction and choose Binary -> Fill with NOPs.

. Vs ™ Can,cun » 13

. PRI PRI e dazrd otr s o el

» sEaz lz nev &8s, dnotd per T

» [T sk Mﬁ d D!l'] -

" BLEL EFLSCRE L oT§ byte u

’ i1 24) ne"c' Lkt i rde T

" ESdz LeruscRE e ea ; .

» A <1120 HD N A ' - iy ni.. o
» AL A ey n.-rd pre - - T »

» Pike TEMAs kb 13 Ani, e -resgom [3 Il vy N I
» LI] ren daced orre - i

» P hebe s e ren demrd o e = urp g2 Loy PR

» S2 QILAFRES Al cwannsth. -l sy - . - T

» + BRAT JCRCIIFF N i B s ST

» A= Do) e ey ara, i ol s = Naeyey Mg = -t

» ESnn3 e oA el ple ; Y et o 1L 1

» ESAN FARCIIFF e e aoph P sezhlodeazizes = -

" Qs TeeeTTrr liw viaanon r SULLTTUT T wuo ooy 'w')."_'a‘}.‘:
' TN A4TRATDD PO oasnolt, - 1ol LASTETATUS LULLUSE (318 WD Jsib
' oD trecTTrr e A Ve e x

53

x64dbg will populate the next values for you automatically. Just select OK on the next
screen.

ED Size X
Expression: 00000003
Bytes: 03000000
Signed: 3
Unsigned: 3
ASCII: o
OK Cancel

If done correctly, the code should now look like the image below. You will notice there
are three nop instructions. We will cover why in a future chapter.

SIOD sOoF.rrrr TIWUY URw o M S BEUNTOSCS Ol EEN
5845 18 nov cax,dnord pulr ssc|feop-15])
an nop
an nop
20 nop
BUBL 4BFLFFFF UL o bvte ptr zcifecp-zesf.v
---=» | D0TCCODAS v T4 23 i= wesrwolh. TCCOCD
el "nTrrnaa RNAT NAENEEEE Tt mwar mned e co- P cl

Before we can verify that our change has worked, we need to disable our breakpoint so
that it doesn't pop again. To do this, first go to the Breakpoints tab. This tab contains a
list of all the breakpoints we have set in the application.

« =m | "V s @ oW | W W s - - I~ TT a: = O3
rpll @ Graph | P1ng [Nates * Breacpoints MemoryMan |) CallSt
YFe Address | Module/Label /Sxc a State Disassemb11
Hardware
0S1D87EC Enanslec |push edx

54

Right-click on the breakpoint you have set and choose Remove.

Ioush €
Del

Space
®; Edit Ctrl+E

@ Reset hit count

*0, Enable all (Hardware)
®, Disable all (Hardware)

®_ Remove all (Hardware)

§ Add DLL breakpoint
f Add exception breakpoint

.1 Copy »

With the breakpoint removed and the code changed, we can now go back into
Wesnoth and observe our changes. Recruit a few units and observe that your gold no
longer goes down.

55

2.4 Reversing Code

2.4.1 Target

Our target in this chapter will be Wesnoth 1.14.9.

2.4.2 |dentify

To recruit units in Wesnoth, you right-click on a tile and choose Recruit. In Wesnoth,
you can only recruit units on specific tiles. Our goal for this chapter is to change this
behavior so that we can recruit units anywhere on the map.

U NeRalefie s ah- 113 - 1 >

~ - .
\
\ Y ’
\ nad
vl

Reeniit

sCription

56

2.4.3 Understand

This hack will require us to modify the game's code using a debugger. To conduct this
hack, we will first need to find the code executed when right-clicking on a tile and
choosing an option. The original game code probably looks something like:

switch(option_selected) {

case "Terrain Description”:
show_terrain_description(location);
break;

case "Recruit":
recruit_unit(location);
break;

case ...

A switch statement allows you to execute different branches depending on the state of
a variable. We want to modify this statement so that clicking on Terrain Description
instead calls the code for recruiting a unit.

2.4.4 Bubbling

In the previous chapter, we found the code responsible for subtracting gold when we
recruited a unit. We will use this code to bubble up to the right-click menu code
location. To illustrate the concept of bubbling up, imagine that the code in Wesnoth for
recruiting units looks like:

function handle_context_menu() {
case "Recruit":

recruit_unit(location);
break;

3
function recruit_unit(location) {

check_location(location);
find_unit_in_unit_listQ);

57

}

function find_unit_in_unit_list() {
get_unit();
get_unit_cost();
subtract_unit_cost();

}

function subtract_unit_cost() {

check_player_gold(Q);
subtract_goldQ);

}

function subtract_gold() {
player_money = player_money - cost_of_unit;

¥

A good way to visualize the interactions between all these functions is through the use
of a function chain. The function chain for this example would look like

handle_context_menu() -> recruit_unit() -> find_unit_in_unit_list() ->
subtract_unit_cost() -> subtract_gold()

The code we found in the previous chapter was in the subtract_gold function. By
bubbling up from this code, we will eventually locate the handle_context_menu
function.

To bubble up in our debugger, we will make use of two features: Execute till return and
Step Over. The execute till return feature executes instructions until reaching a return
statement. The step over feature executes a line of code. Unlike the Step Into feature,
step over does not enter a function if the instruction being executed is a call. We will
elaborate on this later, but first we need to cover how functions are translated into
assembly.

58

2.4.5 Calls and Returns

The call instruction is used to invoke a function in assembly. At the end of the called
function, the retn (return) instruction is used to go back to the code that called the
function. For example, the code below uses a call to increase the register eax by 1:

main:
mov eax, 0
call increase_eax
mov ebx, eax

increase_eax:

add eax, 1
mov ecx, eax
retn

Imagine we set a breakpoint on the add eax, 1 instruction. Once it pops, using the
execute till return feature would cause the debugger to continue executing code until
the first retn instruction is reached. Once on the retn instruction, the step over feature
would then execute the retn instruction and arrive at the mov ebx, eax instruction.
This is a good illustration of bubbling up to a higher function.

To understand stepping in versus stepping over, imagine we set a breakpoint on the
call increase_eax instruction. Stepping into this instruction would cause our debugger
to go to the first line of the function (add eax, 1) and wait there. Stepping over this
function would cause our debugger to continue execution until reaching the mov ebx,
eax instruction. When dealing with lots of low-level code, it is often convenient to step
over functions to not waste time.

2.4.6 Locating the Menu

Unlike variables, code locations within a game will usually not change. Because of this,
we can use the same location we found in the previous chapter to begin reversing.
After attaching x64dbg to Wesnoth, navigate to the location we found in the last
chapter (0x007ccd9e) and click on the dot to the instruction's left to set a breakpoint.
The address will turn red to indicate that a breakpoint has been set. This breakpoint will
pop whenever this instruction is executed.

59

Ji. 5aink

e

agh Dlx

207T0CDAL

ﬁ. Nczes

.D-venlm-n!s -vlrwlvap DCJ"b:k

wmo NL! pLr as:

80!0 43FCFFFF 02

1====8 | UL 71 a4 1& wesnoth. sy

H o] witenaa [T TN 1en rax,ceard arr sstficbn ooaj

- & | J0TCCDEC BA 21220000 moy edx,

! *| 20T CDES 391121 04 muv dword plr cosPespr il ean

! 0| JusiepLy Wis LGOI 1CC cax,dworc ptr s55ijfcbc 2.

i ®] MTCCDRF ASr47s P p‘r “-r P BPK u
al nawmemree - _AA= AREEEeee - Bemseed e ~~r- PE

Next, go back into Wesnoth and recruit a unit. Upon doing so, the debugger will pop
at the same location we saw in the last chapter.

W wisecthcm - D, 20 - Modbe: weiwsthess - Thied Mew Thaed 01 - xidby - o B
fla Ve Dabvy Yacs Sgew Peaoortes Oghov W Teh 0N

'O i tawh twuBiosrky A RO

Boov Bowh it Drene O beiperss Sty [oltad S tost Wieter D drn O bk ST

o wice ry
.
- L n.-..-." v s B '3 w mg
. v eds, L
- Pl L T ferpes)ap | ECX 90000
b Tea can,dwdrd ptr ss e | By ocarn
. ov dward 3er o " wr 'lv_DQK
< SOV Gwrd Mr 551 3%, pax Pl sr ol
. o 8 £S1 00000
- C‘l. L] 35 e 3543 I eI SN 00616350
-
- m “0 Mr ssifess), can IIr wOrcox "SR 00NCDN
. :eva-ra %r suifeby- l‘n.,x-
- T4 TLN OvOr Y g s »r O30
. EAN) weimceh. . Yo ke a ate
- MOv CCndvard 9tr 35 et 210) 3 0 ofo
. sud ez, 4 &) x
- CeET Son € 7r1 31
.o e a-in.xun
- e P, o'\ LASIEr10r 00000000 (URLOR_SUCCES?)
eole L ”d xr sa:fessd, LASISTATUS COO00NS4 (STOTULOBIECT N N
H R B2 . St
o] N £ O3 2028 3 08
ejoorccEas ;S roICry e u-.“ﬂ ptr 55 feto-310) u W3 8 o
L) LTS 1Y AL Ve JUD B35, S X2 B os
ejoorcew ®BCo Test e, eax
o] sorccear - ™™ D Iv wmaeubiy TCOERS
i ejeorce »oRs v dwird por ssiBesol, ean
i 3 1 >
Avterd prr -m}-tanuulm (e
an=al
et i N0 weanoty. @re: 0O eIIN

Wowp! PWiumg e

oo

o

os o

o

0o FEWrT TO WeSTOTY, MBS S Trem TIT

s wenoth, (MO1s000 .

oo

% ' FETWET RO werrath, M S S 0A Fram e

00 v

>

[oeme -

Click the Execute till return button once to execute until the first retn instruction.

Plugins F; ites Options Help |

S §trld=v¢

—

Zlog | [Al Notl Execute till return pts

60

Once on it, click the Step over button to go to the calling code.

>0l ¥I|F -

N [N

You should be sent to the following location:

I cenethane- PO 30 - Midule weinethane - Thasd Mae Thinad B12 - <224y - a »
Fo fow Detg Texe Plose Tavortes Ostiors M Feb 20 2000

CE 40 tawd twuly s i 0

Bov @Scwn 1Lee Utetes @ Bresiooets M Mescrviao () CalSiea I o Soot Mook O lSerce) Rdeetes i)
al mi ru
. oLTEe2s
' » T~ oLTEDeg
o©x ALAISGIA
T4 ¥ esm. A
30ez4 l.:,&va Pf e . My annman
ST AL 00000 -ovo-odpt “p 3., EAE oo

E8 B3COrAFY BANY weinata. T340 £CP NITETEAL
i [$54 Lot o 1
I oM wenoth, 00686120

EIF OWCFICSE weInOth, OOPCrF IS

LEIRTrTorT VUL (PR AL LIY)
LASIStalus TOOM0OIA (STATUS _CBIECT PATHN

GS 028 FS 006)
€3 08 03 oxe
CS %023 25 oce
N

Sedomn (vsnad] CHCEE s

< > Sl

Sesssssssssrscsssssssvssdebes

=L ERT O .

vord ptr [eap-X)= 0307 0] ~Lisss0 Il: g::‘ :;’;‘:
o
i

STENTOOCE RS wesnTh execiRCERES o ETEL

Womp | $N0mo2 PNog) S04 SDups T weh! llces

by |, i |
TR 00 R) C H . 3 e .8byv. . . . oAy
FFFARAS &6 3 e R el B
TP l.l 3 e N : oh Mhyva.. v
rrey S " Aen
™% = P28 0. 2.0y, . .. Ayv
3 o o8 Myv, ... VMyv
4 3 Opv. v]yv
3 Yy Vs yv
’ 2 OV yv
b Y L AR yv
e T . B0y

aleaiias - — A
Comvmardy

The call instruction above the highlighted line is the call we were just inside of. The
code we are currently at was responsible for calling this function. We can use this
technique to keep bubbling up to the function we care about.

We know that the function for handling the right-click menu will have many branches
and calls. We can guess that when translated into assembly, the game's switch
statement will most likely look something like:

call some_address
jmp to_end
call some_address
jmp to_end
call some_address

61

jmp to_end

There will most likely be other instructions, but this is the format we are looking for.
Keep following the cycle of executing until a return statement and then stepping out.
After several times, you should land in the following code:

B consthase M8 B Nadels wisnatros Theosd Man Thvead 1818 ey
e Vow Nivg Tve Mo Fametm fedews i Fo 0o

1O i taves taBi-sefxy L,LRS®
Bt Bown g toter P Brsipewe BiaworMee G clOek Mo it @ owbd Do L Selrenme ETHD

s Fﬂ6 G SN Svorc ptr ds: [esx-is !
. r;-'a: — - At ’ ¢ 1 “ wide FPU
o] OXXCH LS - ('l”i weinoth, COARRD OOMOOED
. CAra a Pa At A gy A Leds s patatacey
: aos 0 ON 00 Tes o5l ,e0rd ptr a5 u: BCX AZADSEIA

I Bn OO

(LU - g
ol CCASID
o be L ——e n-.\b\;\l i e fens [24 CAEREL
ol 807424 00 Ted e5! ,0vtrd pLr 05! “\i £l 00M00X0
. e - WANN Aemra par dui Lo o GBI eMIeees
. 00 -o\ a'.x
ol o B8 CIORECEE CIF GMEArIS el GEEATE
i :“N 60 "\ t{l.": ﬁ' 91! e
. T4 onl . Seor e "
L o x Jore pts o feinr 5o o s
: . - 33‘”"')- w.\m e ‘: -
N el oV eai, deord prr s;-i ¢¢o YO IF
ol corage 0o £4_€3) yOverd PTr 231
. FF10 M Al dvorc per da: :au » Lastieror COOOK0O0 (SUCESE)
. o1 Lantorares CINWMMAIA (STATUE NG 1EFT_DaTu_u
. l-t.\dﬁ “ K% ANPREFIF
. KCASA ea f @sijec Fs 1
. :'u.uh. .‘,N 00 ?22 n:'gs gr] n:] g £= os 333.
. KCN 80 mwo r asife "
- ::(:.‘““ mug’. - ”(ptr asi[ews <i 023 Ss 0O
oJoxcues -~ L9 sy CCasm
o] iccaran o [T S TSR SR | -
< ?

JTENTIOXCARZS weSIOTA exel SECAR S SKCASES
Woare2 50wl SDmp 4

¥% Do §

8 waed 1 b Locs

OBIRECHO

8] 0.7EBEOC
HCA23F) wesnoth. OOC42IF)
000000

~

return 20 wiancRh . MERIF] from vesn

]
TOJOMIFX4A| return B wiSAoth. S0GLTIC. from wess

v
>

Jcetar ~

This pattern looks similar to what we were expecting. We can verify that this is the

correct code by nop’ing out the call we just stepped

out of, like so:

62

B carnoth ann - O 201 - Mnchobe wannoms a - Thaant Man Thvaad 1011 . « Kby - n %
Fe Vew Dive Tace Muos Fawuris Ootom b Foo 2000
LOE 2t taPBiocefixy LLBY®
Hou @cen wo Utots P iowioents MeorMx DlclSak M cisoo Wimbk Souce S Refewas W DhR
sfoxcwio e W -“79 G CED] »] sice Fru
o Chomsror
o [TOR

OICCAT 1A S8l 1 -
DX E AP IC FREE] : :K.; oLEne

slrccarin
*J OXCA LS
.
.

P 036N
[TS
OONCO0

. cun L
. r& ax . dvord B3I ORI
. e 5l , 0vord ﬂ' os ﬂ‘
s .ﬂ" per du: feaxe) 1P IresONC a1, IerEC
o joxccas s AR 8 i3
o J osccaraa o8 WOy SR O d PEF A2
o] o : Ted o3l ,dword ptr t(!l E"“ E] 2‘: :; ::;
s occar s S sare g a0 ..
s OXCH A oy “\l.. — o TFo IFL
~ a

M B2 i -~ %Wv'm LABTATFOr COOUUOOU | MURLI_MEL A)
o] oxccarac R Ted esl.0 wo prr 05! Lastitates COOOMRA (STATUE_OLIECT_PITH_v
sjuxc e SR ower as: |,¢l
sjoxcarss 5 o1 . 2l Gi 28 FS5 006)
; ;’»:E—;:: . : :l-n~. mo$ - €1 S<38 O3 o023
o] vwrazer Yos @si duwed poe As: Lot Ci ™23 S5 0020
oJoxcuen ¢ 9%r a9 [ean
o] oxcuaa ~

< >

JTENTI OKCARDO WeSIDTA exel SIAF D SKCASID
Whp! W2 NDww) WDep4 SDmp!

) MSKM‘ wesnoth, ASE(T04

 vear 1

o 40 FEWFFIL
R]
OLTECDS0 OOCTTANE [retu'n 90 weancth 0OCTTAAF from wesn
O.NEmLs arNDOW

0.7ECDS S OLNDE -8

OLTIEDAC o NDERC

UL/ RAUM U SUIE | TETUCN 30 WEINCTN. ULNUA. TrOm rr
O,TIED 64 OO0000,0

CLTESD 60 ©3083 3T |

2

,E

INP roaw <8 W

TFFIN0 1L 0 o @ (54
FUSEIAPS 18 S0 LA -- #
TFFIA0 30 00 12 @ - o
P 2o on 1 [

-
-

PHERS

BRRIRMRRR RS

RIS
8pB83siE

o
TEFNGO 10 00 12 @ oyt o
1P#970 Ok 50 1® @ - D O So%eAs
IR IRT UN SU I8 W ve w e on | REIEh | aata e 0L HHED 4 COIRO -
7iPF 1095 0K 50 I @ o6 0 & D787 4| COKO
TN A W e v 1 < I >
Cavnand.]hﬂ -

If you go back into the game and try to recruit a unit, nothing will happen. This is good
verification that we found the function responsible for handling the right-click menu
event of recruiting. Go back into x64dbg and right-click on the code we just changed
and choose Restore selection. This will restore the original instruction.

& 1
Felews In om0 14

1 olevein Yemory M8

Bl e BN | B

Graon

Fepomiz uric
Sheww =remenis heief

1ghlchzre mode
Laos L3

Bl Al

_leﬂ
b

~ry—

Treu reuy ’
Commaat

oggs Jooumark tr 40

NN DD

Arabvss L3

—y—

63

2.4.7 Locating Other Events

Now that we have found the call for the recruit event, we can use its structure to figure
out how the other events in the game are called. The call looks like:

call dword ptr ds:[eax+0x54]

This call is not calling a static location. Instead, it is calling the location held in memory

at eax+0x54. If we look at the other calls in the function, we see that they all have a
similar form, with only the last number changing.

Jat«ra+
IICCAFAS
JCCAFAB
2ICCAFEBL
JCCAFEBS
DICCAFES
JCCAFBA
AICCAFCO
JCCAFCZ
PICCAFCT
JCCAFCY
FICCANFCF
JCCAFD L
FICCANFDE
JCCAFDS
2ICCAFDE
JCCAFED
JDICCAFES
JCCAFE,
DICCAFEA
QDCCBOLC

JCCBOZO

3.9
20
3.9
3
J
J
J
J
J
J
J
D
J
J
J
J
J
J
J
J
J
J
J
D
.
J
a8

JICCBO35
QDCCBO2T
JICCBO3A
2DCCBO2C
JICCBO40
DDCCBO4S
JICCBO4T
DDCCBO4A
JICCBO4C
2DCCBOED
JICCBO5S

EY ©3FYFFHF
SEC1

FESU 2LULU0D)
BC C1

EY SAFYFFHF
SEC1

FESU SUULU0DD
BC C1

EY 45FYFFHF
SEC1

FESU 4CULUUDD
BC C1

EY Z6FYFFFF
SEC1

FESU 48ULUVD)
BC C1

EY Z/FYFFHF
SEC1

FESU 43010000
BC C1

EY 18FYFFFF
SECI

FESU 243

BC €1

s07426 00

ES DSFSFFFF
SEC1

FF5C 18

BO 01

807426 00

ES CSFSFFFF
SEC1

FFSO OC

BC C1

SD7426 00

ES ESFSFFFF
SEC1

FF5C 08

BO 01

807426 00

ES ASFSFFFF
31C0

np wesncth.CLASD

nov eax,cword ptr dc:[ecx]
€all dword pur ds:[eax-12¢]
nov al,l

np wesncth.CLAS-D

nov eax,cword ptr dc:[ecx]
€all dwcrd ptr ds:[eax-1s0]
nov al,l

np wesncth.CLASD

nov eax,cword ptr dc:[ecx]
€@ dwcrd ptr ds:[eax-14C]
nov al,l

np wesncth.CLASD

nov eax,cword ptr dc:[ecx]
€a1 dwcrd ptr ds:[eax-143]
nov al,l

np wesncth.CLASD

nov eax,cword ptr dc:[ecx]
€all dwcrd pur ds:[eax-144]
nov al,l

np wesncth.CLASD

nov eax,cword ptr dc:[ecx]
€all dwcrd pur ds:[eax-:24]
nov al,l

Tea esi,cmord ptr ds:[esi]
jnp wesricLh.CCASED

nov eax,cword ptr ds:[ecx]
€all uword pLr ds: [eax-18]
nov al,1

Tea esi,onurd pLr dsi[esi]
jnp wesncth.CCASFD

nmov eax,onurd pLr dsi [ecx]
€all dwerd ptr ds:[eax-C]
nov al,l

Tea esi ;,omord ptr ds:[es-]
jnp wesricLh.CCASED

nov eax,cword ptr ds:[ecx]
tall QWer pur ds: [eax—8§]
nov al,l

Tea esi,onurd pLr
jnp wesncth.CCASFD
AUP €dX,cdX

dsi[esi]

64

Due to this structure, we have to revise our original code model that had a switch
statement. In the screenshot above, we can see that the last number is always a
multiple of 4. Therefore, we can assume that these functions are most likely stored in
some type of list or array. The original's game code probably looks something like:

void* context_menu_functions[MAX_FUNCTIONS] = {
terrain_description,
recruit_unit,

}

context_menu_functions[option_selected]();

This code stores a pointer to each function in an array. The option_selected variable
can then be used to retrieve the correct function from the array and execute it. We will
cover pointers in a future chapter. It's important to note that even though we had the
wrong original code in mind, the overall structure of branching will always be obvious
in a game's code.

We know that the offset for recruiting is @x54. To determine other offsets, we can
change the recruiting call to other values and note the result when we use the Recruit
entry on the context menu. Starting at eax, we can try each multiple of 4 and log their
result (eax + 4, eax + 8, eax + Oxc, eax + 0x10, and so forth). For example, by
changing the value to @x28, a terrain description will show up when we try to recruit a
unit.

Balait | OV =AY, TnOra OTr gl ST]
T

LA - -—' -
Call dword ptr doifeax+.4) recruitc unt

E9 D3IFOFFFF
ARM
MTA70 NN

Jip wesnoLlh. CCASFD
mov =ax,“ward ptr Z5: [erx]
Iea r31.mmard ntr ~stie=

65

Far more interesting is when we change the value to @x68. In this case, a Debug menu

to spawn units will appear.
U Ihckatt ztce werach "4 - (m] 4

Cread Ga
Vampire Ba.

)

Blood Bat Irakeos Armageddan |rake

Lvii © A% nal i Drokes Drzke Arbiter

MP: 3 Irzk Drzke Blad=mas.sr
Trails sk Bornwr
fax 1 rakn Clasker
e Drzke Crforcer
Drzke TMNighes
1irzks Flamaheart
Urzke Flare

Droke Clicer

2.4.8 Change

We can use the two values we found above to create our hack. First, we will locate the
menu item code responsible for showing the terrain description. Then we will change
this value to call the debug menu instead.

We know that the value for the terrain description is @x28. By observing the area
around the recruit call, we will eventually find the code responsible for the terrain
description event.

66

DOCCAFES ~ E9 T3F9FFFF _inp wesnolh.CCASFD
0OCCAMCA fu]1 D mzy cax,dworz ptr ds:[ccx]
DL AR L Q4L DU O =
T AFSN FF30 7?8 crll dear-d ptr ds
DOLLARS S EU 01

N CAFSS ~ F9 RITIFFFF _inp wesnol h.CCARFD
O0OCCAM2A fu] 1 D moy cax,dworZ ptr ds:lccx|

Next, we will change this value to @x68. This will invoke the debug menu anytime we
select Terrain Description. Since the terrain description is available on any tile, this will
allow us to recruit units anywhere.

- =¥ CSEEFFESF IMP WeS IO L ASEY
® |l EBO1 eax dword pur yo: [=cx
eflc CD742G 00 : :

®flucinEyy =REL bR

e || NTCTAFIS 1) e |

@ || OZCTAFSS -+ 29 E3FSFF-F rp weznoth.CCABFD

B ZCAFSA EBO1 muv _=ax dword ple o [eex]
e Troc 20010000 €@l dword otr ds:lecax 12C1

Once this change is made, go back into Wesnoth, select a random tile, and choose
Terrain Description. Select a unit from the debug menu and verify that the hack works.

»
»

Terrain Description ctri+t
Sct Label alt! |

_lear Labels ctri+c

Melay Shrovc Updates

67

2.5 Code Caves

2.5.1 Background

In the previous two chapters, we made changes to the game's code to alter its
functionality. For both of these changes, we replaced the original instruction with a new
instruction. But what if we want to keep the original instruction or replace it with
multiple instructions? In these cases, we will need to use a code cave.

A code cave is a section of the game's memory that we fill with instructions. We then
change the game's original code to call these instructions. The name comes from the
fact that we are creating a hidden "cave" of instructions. Most games will have large
sections of unused memory between functions or at the end of the executable. These
locations are perfect for creating a code cave in.

2.5.2 Redirection

In our last chapter, we changed the function for displaying a terrain description to
instead call a debug menu. By using a code cave, we can still invoke the debug menu,
but also call the terrain description function after. By doing this, we won't lose any
functionality in the game.

The original instruction for the terrain description call looked like:

Ox00CCAF9@ call dword ptr ds:[eax+28]

For this example, assume that there is an empty section of memory at @x@0D00000.
Our first goal is to recreate the original call at @x@@D@OOO@ and then redirect the

original code to this new code. First, we will copy the original instruction to
0x00D00000:

0x00D00000d call dword ptr ds:[eax+28]

68

Next, we will redirect the original code to this call:

0x00CCAF9@ jmp 0x00DOVVOd

Finally, in our code cave, we need to go back to the original code. This can be
accomplished by jumping to the instruction that comes after the one we replaced. In
this case, the next instruction in the game is at @x@@CCAF93. Our completed code cave
would then look like:

0x00D00000 call dword ptr ds:[eax+28]
jmp @x@@CCAF93

2.5.3 Restoring Instructions

As of right now, this code cave only recreates the original instruction. This is an
important first step to ensure that our redirection isn't breaking anything. This is not
always the case, especially when dealing with game functions that modify the stack. We
will discuss how to deal with these in future chapters. For now, just be aware that
redirecting the game's code will not always be a smooth process.

When writing a code cave, it's critical to only modify what you require and nothing else.
Accidentally changing other registers, sections of memory, or the stack can cause the
game to crash. To illustrate this principle, imagine we had the following code that we
intended to redirect:

mov eax, 999
call OxDEADBEEF

Let's say we redirected the call to a code cave that looked like:

mov eax, 123

call some_other_function
call OxDEADBEEF

jmp back

If the function at @xDEADBEEF required eax to be 999, the game would throw an
exception and crash. While this is a trivial example, calling game functions will often
have many side-effects that you won't be aware of.

69

To save and restore the game's register values (eax, ebx, ecx, and so forth), we will use
two instructions: pushad and popad. pushad pushes (or saves) all register values on
the stack. popad pops (or restores) all register values from the stack. In future chapters,
we will cover the stack itself and how to restore the game's stack. However, restoring
the register values will prevent most crashes.

2.5.4 Cave Skeleton

With these instructions, we now have a basic skeleton for a code cave. It looks like:

pushad

execute new functionality
popad

invoke original instruction
jmp back to game's code

Let's return to our Wesnoth example. In Section 2.5.2 above, we had the following
code cave:

0x00D00000 call dword ptr ds:[eax+28]
jmp @x@@CCAF93

With pushad/popad, we can now safely introduce new instructions. The code to invoke
the debug menu looked like:

call dword ptr ds:[eax+68]

Let's assume that this call doesn't modify the stack in any way. We can safely call this
function in our code cave by saving the registers, calling the function, and then
restoring the registers. We will then execute the original instruction and jump back to
the game's code after the original instruction. Our final code cave would look like:

0x00D00000d pushad
call dword ptr ds:[eax+68]
popad
call dword ptr ds:[eax+28]
jmp @x@QCCAF93

70

By doing this, we have created a cave in the game's code that replaced one instruction
with multiple instructions. As long as everything is restored, there is no limit to the
amount of new code that can be called.

71

2.6 Using Code
Caves

2.6.1 Target

Our target in this chapter will be Wesnoth 1.14.9.

2.6.2 |ldentify

Our goal in this chapter is to create a code cave inside Wesnoth. This code cave will be
executed whenever we select Terrain Description. The code cave will give us 999 gold
before bringing up the terrain description box.

2.6.3 Understand

To create a code cave, we will first need to find two locations: the location to redirect
and the location to place the cave skeleton. We will then create a cave skeleton at the
second location. With that created, we will redirect the first location to jump to the
skeleton.

2.6.4 Locating Gold

Since we will be modifying our gold with this hack, we need to find our gold address.
Our first step is opening up Wesnoth and creating a local game. Then we'll follow the
steps in Chapter 1.5 to find our gold address. Like we discussed in Chapter 2.3, our
gold address will be at a different address than in previous chapters. Once we have
found our new gold address, we will close down Cheat Engine but keep Wesnoth
open. In this chapter, we will use the value of @x@5F3B85C as our gold address.

72

2.6.5 Locating Code Cave

First, we will locate where to place our code cave. While there are many places where
we can find empty sections of memory, the quickest and easiest approach is to scroll to
the end of the Wesnoth module. At the end of most executable modules, there is a
large section of empty data that can be modified. In our example, this memory is
around 0x0134360E.

Fa Yrae by Trar Pame Fracils Tyome B RLIZTTED
S E =06 ?5 %) *au B s fxa AL BE

ﬂ:-u i?c...c. |2y | Nl ® Evdiang B s M THCASan ¥ ZEH 9] Sl {Swvb;b

¢| CAZ4360E 2000 2CC oyte ptr a:;*::q w2l Al de s

- . 2200 ot gyie pbr du:foan] w1 -

. 3 2000 aCC Oyte ptr dzileax],al <y

- 2200 RS 'J-:: (LE EL' Ju: }_‘J\‘l :»J -a‘: '::J':

* 20200 aCC Oyte ptr d::}ear;.r,e.l :‘..; ‘.--r

o 1M veld figlee ple b ferand, =2

. 2220 ¢ Oyte ptr ::}ear;r,;l mx amn

o 10 ol g les pite b Peand :R’ _":r

. 2000 acC Jyte ptr d.’:}ea';.',e.l =5P 17F

" 1M vl gl pile b feran] o0 £5I 2000

* 20200 &CC oyte ptr dzi }ea';.f,e.l I 217E

v 1N vl Big e ple bl fean] o0

. Q000 acc oyte prr dz; Fu';:,ej =i¥ sde

o 0 vl B e ple bl fean] o0

. JI00 &CC Oyte pTr dzi[eax],a) .

- 1M NE; :x‘:: ' ;pl LN F ! :. | .;_I:LT"*,- l:

B 200 &CC JyTe pTr d::F:a-;;.u ar o = a

o 0 vl g lee ple b fean] o0 fred

- 230 2 JyTe per d::F:aq.u &£ =

v N el g lee ple bl fean] o0

. Jao0 &CC JyTe ptr ds: F:a-;; =y ~Az%Error

“ M0 vl gl pl e b feran] o0 -aztstatus

“ 2200 &CC Dyte ptr ds:(=ax] .2

v M vl gl pl e ol eran] g S ————

- 2300 20C JyTe prr ds:(=ac],a STARES 11 B0

v N vl g le pll e ol eran] el _T vl Vol

“ 2200 aCC oyte ptr ds:(=ax].,a) [r—

v M At e ple a2 v‘d).[=1 ol

s » dz T=snay .

“ 2200 2cC ovze prr ds:feaxl.2 - ~ehuk stz
tate pTr |eax] [C) 297 l' I[ss::::)l
e 31 [=soel]

i: DS e
ALz OLI4300C et enez $r43C02 00 . F!SD?I-’&'

2.6.6 Hooking Location

Next, we need to identify the address to hook. In this chapter, we will be hooking the
method that displays the terrain description. To find this address, we can use the same
method and address we identified in Chapter 2.4. This call is at @xCCAF90.

OOCCAFES ~ E9 T3F9FFFF _np wesnolh.CC4ASFD
0OCCAMCA apoa mzy cax,dworz ptr ds:[ccx]
DXL AR L A/ 4l LU T -
MNCCAFSN FF30 7?8 cr1l dwar- ptr Jds
22 BU 01
~ F9 RITIFFFF _inp wesnol h.CCARFD
fu 1 Dotk moy ca,.dworZ ptr ds:lccx|

73

2.6.7 Redirection

With our code cave and hooking locations identified, we can now create the code
cave. When modifying a game's code in a debugger, it's important that the game is in
a paused state. This prevents the game's normal execution from accidentally entering
our code cave before we have finished it. If it does, the game could jump to non-
existent code and crash. To pause the game, we can use the Pause button next to the
Continue button.

We can now redirect the hooking location to jump to our code cave. In Chapter 1.1, we
covered the idea of opcodes. Each instruction has a different opcode and also a
different opcode length. This is because certain instructions require additional pieces of
data to execute. For example, the pushad instruction is represented by the 1 byte
opcode 0x60. This is due to the instruction not requiring any additional data to
execute. As a contrast, the instruction mov al, 1 is represented by the 2 byte opcode
@xB@ @1. This is because the mov instruction requires the data to be moved (in this
case, the value 1) to be encoded somewhere inside the opcode.

The jmp instruction's opcode is 5 bytes long. This is because the opcode encodes the
address that will be jumped to. Because of this, we will need to find a location of at
least 5 bytes to place our jmp instruction. To do this, let's examine the method for
displaying the terrain description:

8B01 mov eax, dword ptr ds:[ecx]
8D7426 00 lea esi, dword ptr ds:[esi]
FF50 28 call dword ptr ds:[eax+28]
BO 01 mov al,l

Unfortunately, there is no instruction in this method that has a 5 byte opcode. In this
case, we will need to replace the first two instructions. When writing our code cave, we
will need to remember to replace both of these. However, the opcodes of these first
two instructions (@x8B@1 and 0x8D742600) combine to 6 bytes total. When we replace
the first 5 bytes with our jump, the last byte (0x00) will stay and potentially be

74

executed. To ensure that our change does not cause the game to crash, we will replace
the last byte with a nop instruction. x64dbg will automatically do this when assembling

instructions.

With all of this out of the way, we can finally make our code change. Navigate to the
first mov instruction at @x@@CCAF8A and change the instruction to jmp 0x0134360E.
Make sure that the Fill with NOPs option is checked when assembling this instruction.

This jump will be responsible for jumping to our code cave.

'ﬂ' veosm s VR0 Medal: sesnl oo SRR AT | [TISVE IS SR ol | [T
W= vew Daba; Trace Poghs lasoartes Optics llep ek 2D 20X
Syl taed T2 AR d R RP
B Woaxn Sac Thetes ® pedpsvs M MaveyNad JcaSma WEH Losapt @b
:)0CE :-.f: B07126 OC lex ez1,dn0rc ptr coilezn Al tde 1
B 20 €L ey al,2 ‘ 2
» . T4 VTACCET ity weseath. roanrn :;': Jl'f(
B P oS R TR Ino wesnoth. 124300 % TRE
. N ' g =i
» 1LU 2y 2 deced prr ds:(oaxiiz) L 200
B 20 O wa Al ZBF 38
B3 TIoCITOTTY e v.émr'—. T =5F 1
. BBCd TCY e, MnorC PRr Coilecx) Y} Ju
B TrAT N0 PR el e Iz feas (mT 1k
B 50 UL oy 81,2
» ~| =9 S4=]FFES 1 wesral e, FOARFT sTF bl |
B sEL now 2as Inorc JTr cs:[ecx)
» SESO MO R ol prie b e IRT]) =
B Ju UL ey al,: ::'Lau:: .
* | £9 A3F3FFFF INg wezrnath, CCABFD A ar o -
v anm e s, b mle razfins AL = 1:=
B L TR TR T €2 drord pTr ds:[=ax+14c]
B o we al,
. ol =9 snesrrr- IND wesnath.LLASHS ~aztError
v RRM TEL HAd e ale ez (o3 =ASTSCATL
B 150 $50ILIIY CEAA drced prr dsifcaxii4d]
. 30 C1 ey 8,2 a% COM
- | 27TOTFT iy wesnoth.Ccaors T4 OM
. BBCa Y ean,norc ptr coi [ecx) s o2
o] TrAC &S00 T dewl pie Iz feasi 1447
Ll B S0 UL oy al,o "
MED +| £9 1R=]FFES 1wl e S5 ARED -
< 3 .:efa.t(:bc:
1: 1
Taep s Laken 2 ,L'.‘:Ipla
wesnoth. Jlz4sbue 3 Lesp+l
- i
LCOXTILALA) BE WSS DT, CNC d20R] YA ML Al us s Cazpea

] (8 [= .

il ea . - .. -

2.6.8 Cave Skeleton

o o, PUITTOEN] czcassis ret.

Next, we can write our cave skeleton. For now, our cave skeleton will just save and
restore the registers, replace the original instructions, and then jump back to the
original code. This will execute identically to the original code and will allow us to verify
that our redirection was successful. Navigate to @x@134360E and insert the following

code:

pushad
popad
mov eax,

dword ptr ds:[ecx]

75

lea esi, dword ptr ds:[esi]
jmp @OxCCAF90

Fb Yiw Mxdmy Tres Megexw Focasaw Opoa =p FLHIINDT
1o Em *U T 9y AP SRy ALE®
B @Woopn rlee Troks @ meamens M damervite | calskd Wes- (ol sopr e

. 1 ac —
.I Lll4.001 LF=Y = Hie
. sBUL MoV 22X,0nCd DI cs:if=ck) s
o] C1343€12 2236 lea 237,0nCd DT cs:l=230) Ex
o] C1343€11 « E9 T7799ECF IND nwesncth. CCAFSD
o] c1z43€15 £00C 2d3 syte oTr czileax),al]
o| c1z43€1E CO0C ofd uyle plr usifean],al e
™ EEERETSL e Akl Byt pie e e Al ZEP
e| c134z61F oo Akl iyl mie e el 4l Jut Y
o] o140 O ekl dgles pie sz fmisd Ll 252
o] v i oo cdd moe ate o5 ool Ty
o| viissels Loy odd ovyTe oTre csifoox],al
o| viisses Loy odd oyTe otre cZifoon]Lal -
o| vizgsess Loy 2dd oyte pIr cs:if=ax).al
| CL34362E CooC adld te pir cs:il=ax).al 1 g
o] C1l34360 CO0G &3 oyte pir cs:il=ax).al ZF 1
o] C1343€2F CooC &dd oyte pir csileax),al AE A
o] C1343€31 CooC el uyle pir voilean),al
o] o1342623 COne DY S IR TRE SRV oy B crd
| F1343638 N Akl Byl pie e Peesd Al
o] C1400n O ekl fgles pie s b} al -5t
(] EEL N N{IE o cdd moe ate ostieeylal JR-N 8
ol s [R3E cdd e ate cstfeeel
o| vitssey Loy odd vyTe oTr cZifoox],al GE 2
o] Lizgsezr Louy 243 oyTe pIr cs:f=ax],.al |
o| C1l343641 Co0C ad3 oyte pir csil=ax).al CE D
8| CLl343€a3 CooC 2dd oyte pir cs:il=ax).al
] C1343€45 Cooc add oyte pir czileax),al S
o| c1343¢97 CO00 o Uvle Ulr Lol eeni.al Y= foud
< > Cel
D .

To verify that this code cave is being called, place a breakpoint at @x01343610 and
then continue execution of the program. When you bring up the terrain description,
the breakpoint in our code cave should pop.

S OE s 0 tAe) e B P L RO

Hou Gah Ly Chetes ® Neskoets WMeseyMw (JCHSd WS oSomt Msebas O Sewe S Refeeces W
- jalee] [pushad
. 141606 &3 Pl L wide we
e . amoa =80
. I ®ie 1es o3 dword ptr d::?ﬂﬂ X $000M01
ejocsalcasl ~ g1 TTTveRMY I wessth.CC ,
o] ssacacae acr0 add wyve po el ECL ssimTs
ejoLzaran 0000 A00 byte W S00mot
o] sl 0000 asd byte T
of s:3230ar pootd a8 byte e aaveroas
] ERTI S 000 asd byte IR om0
. JAIS 0000 A543 DyTe ®E ITHoso
- 343453 00 - Lyie
. TIL ok 0000 403 byTe I s oSN Th, 01343810
. 141R9 0000 a8d byte
- Y PP o e o
o] clra3e0 0000 asd byte ::‘:"" ;n:;“:‘
HESH I 28 o ore s e
. I 000 A3d byte P2 wa 3.
elosias 2000
. 1eie o000 :” g;}: SASTAITON DOOONOOD | BRREK_MCCE N)
o] o3s3a0 0000 a0d byte LASSHTASUS 000N (STAVE_CRIECT N _
. 1416k G000 asd bvte
. J4IG0 0000 403 byte GS 0021 FS 008}
. 141GF 0000 acd byte £5 002 QF 002
- AT annn AN T
. 141642 0000 asd byte e) Lot
o] ol3aseas 0000) 3
- 34064 A e m- v
< >
el
Sard 2r [2x)+[O833 3 71] *wesn0TH, 01 508C 84
LTMETIOLRARALO weanaeh. sisl LAAIALE 00 waprdd] OATEORO

$owp1 WMo Wowe) EWOowed KDweSs

S iBiE

QOC42IF3 | return TO wesnoth, DOI42I3 Trom wesn

7GF 1000 a8 0o lao%ww 1 | sosasox
TETAOIS 00 1A i e A e
Yerrantal aF ne n ne PETEATERSR s re ar e RESATTESS 0170w

76

2.6.9 Change

With a working skeleton, we can now change our gold. In between the pushad and
popad instructions, we will insert our instruction to modify our gold. To do this, we will
move the value of 999 into the address holding the gold value. This instruction will look
like:

mov dword ptr ds:[@x5F3B85C], Ox3E7

With this instruction, our final code cave will look like so:

B 1343608 200D adc Irste ptr ds: | =ax],al =
. 2J43ULLA JULd adc byte por 15: [cax),al

- 13436CC 200D adc byte ptr Jdz: | =ax],al

q & il pussac

¢| 21313607 CTC: SC38F305 7032004 nuy dword pLr Jo; [SF3385C) ,3:=7

q 343613 5 poapad

®| 2131361 BECL nuy eax,dword plr de; [eon)

- 1343610 323§ les e31 dwdrrd Dtr ds:jes es1:2%Y~
o Nissa PRI B PP LA JYQ wcosnATACC AL)

| 21343625 2002 adu byle pur Jo:T=ax],al

a J (SR ade yre pre A5 [rax],al

e| 21313637 2002 adu byle plr Jo; [eax],al

a 1343623 200D adc byte ptr Jds: | =ax],al

If we go back into Wesnoth and select Terrain Description on a tile, our gold will
change to 999 before the terrain description box appears.

S 111 S+ 1
attlc for Wesnoth Help

rod aclicn ‘i Encampment

msglsy

Bzse lengin: Casliz

Mavement prooertizs (Dst=

Nefanse properties: Castiz

77

2.7 Dynamic Memory
Allocation

2.7.1 Overview

In previous chapters, we modified the player's gold in Wesnoth. Whenever we
restarted the game, we had to repeat the process of finding the player's gold memory
address, as it was different each time. This is because of Dynamic Memory Allocation,
or DMA. To write hacks that can be reused and distributed, we will need to somehow
convert these "random" addresses into consistent addresses. There are many methods
to accomplish this task, but first we need to discuss how DMA works and why it exists.

2.7.2 Background

As we discussed in Chapter 1.2, games are large programs with many resources. There
is no way to fit all of a game's data into RAM at one time, so it must be loaded when it
is needed. For example, a game will not load an enemy's model or image until the
player is about to encounter them. This process is known as dynamic loading of
resources.

These dynamically loaded resources must be placed in some section of memory so that
the game can access them again. The game is responsible for creating and destroying
these sections of memory. The creation is known as allocation, and the destruction is
known as deallocation. Dynamic Memory Allocation is therefore the process of creating
memory sections to hold resources when they are needed by the game. The game can
only ask the OS for memory and cannot control where this memory is located.

Let's consider the player's gold in Wesnoth and how it is created. When Wesnoth is
started, a player's profile is loaded into the game's Player class. The player can then
select from a variety of game modes and other options in the main menu. If the player
then starts a game, several items are allocated and placed in the Player class, such as
the player's race, their available units, and their gold. When the player quits the game,

78

these values are then destroyed. This is why the player's gold address is always
different.

2.7.3 Programming

To program hacks, we need some way to consistently find the gold address without
searching in Cheat Engine. There are several ways to accomplish this:

e An automated scanner, such as Cheat Engine
¢ Code Caves
* Reversing

These methods can be used to find any dynamic address. We will discuss each of these
briefly in this chapter, but in future chapters we will use all of the methods.

When using Cheat Engine or reversing, our goal will be to find something known as the
base pointer. In general, the base pointer represents a memory address that is always
consistent and can be used to offset to the values we care about. This method works
because there are some addresses that must be constant for the game to find them.
For example, in Wesnoth, the game needs to know where the Player class is. If we find
the Player class, we can then use it as a base pointer to offset to our gold address.

2.7.4 Cheat Engine

One feature of Cheat Engine is the ability to conduct a pointer scan. This can be done
by finding an address (such as the player's gold) and then right-clicking on it to bring
up a context menu. This context menu contains all the pointer scanning functions.

79

&, ChzazEnginc 70 - 3 x
e 1dt labie 12U 1l=lp
b ¢ I=lete ==is remand il
I3 = .
= =5 . Crangerzcord >
= rcd 1= 52
ound: 12,523 M rmwss Hhs me Ay reginn Ctel+ll
e ra ; N . . ar
i vatuc | tx.. 7 Deasczmb e thic memory regior Cui+ D F Setting:
€20C303D6C 1 1
thevar as signed
G7NCACAR2T 1 1 _ i
— Show 3¢ hexadecial
eSS DE d 1
€20C3C179C 1 1 & trangelolor Fzrmula
P o e 1 1 v [3ethotkeys Zrri+H
LI C386: 1 1 i}} 5¢r’Changt dropdovm sclcct on cptions
€20C3CIBES 1 1 Toyole Selecles Recwioy Space ndommes
620C304CAT 1 1 p'cSpeedrack
BT e Tk Te ol 1 1 Jznerate po ntermap
6 UL3CIDLE 1 1 : =nmn==r scan *or this addr==e
©20C3CIDNC 1 1 &1 Finz outwrat acceses tric zddrecs =5
€20C304ETC 1 1 4 e ous weak zmeee to <is address b
G7NCAT4FAT 1 1
62 B UoZE 1 1 Secaloulate e addsss =
€20C3C5382 1 1 Force rcneck symbo s
NCACEATT - ~ -
-NCACH5] 1 1 - \ 9 ot Lt"l)\
< > :
[Copy Cul+C
Memzry View ™ raste culiy fess Manually
Actrvs Desnp=an Acidre 4 Drmac=|leader
No descriction
Advanced Octions Toble Edres

This feature returns all the memory locations that currently reference the selected
address. These addresses can then be saved to a scanfile. After that, the game can be
reloaded and the address can be found again. By then comparing the new memory
locations to the scanfile, only the consistent locations can be narrowed down, similar to
regular memory searching. Eventually, we will be left with only the pointers that always
point to our selected address.

2.7.5 Code Cave

Another method to defeat DMA is using a code cave. With this approach, a location is
found where the desired value is accessed. For our Wesnoth example, this can be

80

anywhere that gold is changed. Immediately after this location, the code is redirected
to our code cave. In our code cave, we can then save the current value to a piece of
memory we control. This memory can then be accessed consistently by our hack.

For example, the code in Wesnoth responsible for decreasing our gold when recruiting
a unit looks like:

sub dword ptr ds:[edx+4], ecx

When this instruction executes, edx + 4 contains a reference to the gold memory
address and ecx contains a reference to the cost of the unit just recruited. By
redirecting the code immediately following this address to a cave, we can then save
the address's value in the cave. An example cave is shown below that would
accomplish this:

pushad

mov dword ptr ds:[0x12345678], edx+4
popad

...original instruction replaced...
jmp O@xredirect_location

With this done, our hack could then reference @x12345678 to get the current value of
the gold address.

2.7.6 Reversing

The final method of dealing with DMA is reversing the target. This method uses a
combination of the previous two methods and is the most versatile. In this approach,
we first find an instruction that modifies the value we care about, such as the sub
instruction in the previous section. Then, we analyze the function before that instruction
and determine where the register we care about (in this case, edx) is assigned. Often,
this will be assigned the value of another register with an offset, such as eax+60.

We then repeat this process to find where this previous register is assigned. Eventually,
we will find the base value or pointer used to assign all these values. This base pointer
can then be combined with all the offsets we reversed to retrieve the address we care
about.

81

2.8 Defeating DMA

2.8.1 Target

Our target in this chapter will be Wesnoth 1.14.9.

2.8.2 |dentify

Our goal in this chapter is to locate the base pointer for our Player class. After that, we
need to figure out how to offset our gold address from this base pointer.

2.8.3 Understand

When a player begins a game, Wesnoth uses DMA to allocate several values, including
the player's gold. This means that the player's gold address will be at a different
address for each game. By contrast, there are several values that remain constant
between games, like the player's profile name. These constant values must be stored in
some sort of Player class. Since these values persist for every game, there must be a
static address that Wesnoth uses to locate them. If we can find this static address, we
can then offset to our dynamic gold address while in game.

To visualize this, let's imagine that Wesnoth's Player class looks something like:

class Player {
string player_name = "IEUser";
int wins = 100;
Game game = null;

And the Game class looks something like:

class Game {
string side;
int gold;
int turn;

82

When a player enters a game, the game's code will allocate memory for this game
object and all the values that it contains:

player.game = new Game("Human", 100, 1);

By finding the value of the gold address, we can reverse the game to find the value of
the Game address for the current game. We can then use that address to find the
address of the Player class. Since the Player class is always loaded, it will be a
consistent address. From the Player class, we can then use the addresses we found
while reversing to offset to the current gold address.

2.8.4 Locating Gold

For the last time in this book, we will need to find the address of our gold value. Our
first step is opening up Wesnoth and creating a local game. Unlike the previous
chapters, make sure that you give yourself Income to make the reversing process
easier. Also, make sure the second player is set to a Computer opponent.

Gamec Lobby — 2p — Fallenstar Lakc

Team: Woest

—_—

1 * { ? Faction: Rardo

: TRt
fn Genrder: |C.

Teamn: Casl

2 (] ® ors

Geraler: |20

Then follow the steps in Chapter 1.5 to find your gold address. Once you have found
your new gold address, close down Cheat Engine but keep Wesnoth open.

83

2.8.5 Base Pointer

Next, attach x64dbg to Wesnoth and set a breakpoint on write on the gold address
that you found. Unlike previous chapters, do not recruit a unit. Instead, choose to end
your turn. Upon ending your turn, your breakpoint should pop as income is added to
your gold.

Fe Vewu Jebug Trxe Nors Faouts Cotors Med

DE S tawy ta P . e AL R®
By Pown e wies O Bedpors Wy (JCHSek M soet Wombes O Sore Befererves W iyl
2l SEALD S [| r' P "
e = S e & =
. awso e l“ ”" nr ul(m nl el) n
-] A o "
____m_.—.uumu‘__,m__._ c SOOOC
- ©48 K OALOD 1ea ocx,ceord ger di:len b wx <
- TOBU WAL AR Y Tes,Uwary gt 1 Lo 3 — 00N
. oA mov dword str :[r 3, rax I o'’
e 05 00%F2L00 u“ -tS'\O(" (‘C(‘O (4 o1'LE2ie
. WED UrES R igecp- g T34 —ne
. 3 - &J) e, 4 wi OON0OKS
. 2005 LAFAREFF rd 3t Bt 4100, vax
. U BCMFE I u‘l -un«n MEFPO ar "< WeINOTH, 00984003
. |50 IC mov ecx dword ptr sfeaxsi0]
- maee "o iy w1 Lanx . | lerneis oosiodes
. BAS LFARFFF mov_e1! O t-] E;_‘:“’u n"g’ﬁ‘
. FArDL il
- e Sk wd) oo o ¢« AFr o £t o
. nee TEST €50, 08 K¢ TFPa ¥
. A5 LIFAFFFF mov dword str 13:fetp 4108,
- e Aw '3 .'.-.,\-.”g‘, MONMrrer HMeNeEs (I _Sa it s
. B0 NFAFFF mov_ ecx ,dwdrd ptr therp- 210§ LASTITATHS COOOOURA (FTATEE_ORIECT_NAME_N
. 5 PAMAFF [-Q!MH.N’ 0
. Sas Lsramrr mov 3! ,dword gtr H R
. N0 sib dword tr S -
- At ranrrr e e s d Sl
. FRAA Falioom BOVIX SAX 3yTe par s ‘
: ,’:.i’)_ ::,: L = \h.(- ii»h'x-(-x-x-x-)-x-» Y0 gy -.nl
. 24428 04 mov dword dtr ssifespe o), e espes) s v —
ol . E C ’ etk (widol) * 5 5 U uUniokn
T~ 1 [sspvd Wl!ll s twar
Ow0fd Cr canvd =TI =D ‘» 3 ‘upol, o 20 wasnoth, 0418 2800

ocuel '\ * t.’. ACAMTR. DI

T
a: [aspedd] ©
SOENTINOM000 vesnethLaxe: A0 sl 5 ’»u .“‘ OOOO00

Whwro! PN0mp2 PSOwpI Woumd PWoupt: Pachi ol s ,,K,‘,,,,”,” 3

Addras | = ! ¢1S5IED0 wesroth o e1SEIEDO

.cng,:(:) O >) 0 . . . l:'" | l S155.ED0 weSrOTN. 415500

Coroesec | RLAD TO 0 R4 A2 S0 L O . . . C ‘| $17E4508

ree e | & 13 & | 2 1 | B . - : ‘ f‘:l::)l‘:;; eturn te ntc11.77000499 from 1td
OroaC | 42 22 20 0 B2 22 20 08 EG 12 24 0F | . A A RS . antaae te te Nt oa E t
TRV | 5 23 65 00/ £ 1§ o) et s HLIam 1 1B L7E4130] sonceees

OrosAx | ot » DA) 02 X " . a z = :i :l.r. -1

00T ORALC » 20/ 14 20 X O X X X spgeesgecptes 5| saretrse

OTEeAN LA LS a.un.u.a; u.u.u.a; I . XAe, 28, M., . «.)ou\‘

OO ORAM iy 04 ’ 3 X . D*p west > .
covemans | SaStSl aaaa en scan ioiplio ot as op | (re | edien A) 181 1480 |wesroth. :1450K

TN Rl bl Ml Bl M A i) : LM ATAL vid]

- Dabeir =

Let's briefly examine the instruction that our breakpoint popped on:

009B4D0O add dword ptr ds:[eax+4],

When this instruction is executed, eax+4 holds the value of our gold address (in this
instance, @x@D7@B9AC). Our next step is to determine how eax is assigned. If we look
above the add instruction, we see several mov instructions that reference the value of
eax. Above these, we have a call instruction to an unknown function. To determine if
this function is responsible for setting eax, we can set a breakpoint on this call and
then resume Wesnoth. When we end our turn again, this breakpoint will be hit.

84

B moetre - D - Nodde avnothme - Thoud Mas Tread 118 - Lidhy
e e e Yer Mpn Frawin Qeew M fw i
Lo 40 tAaddtaBislkn ARE
Wow Pown g Dt S bedeew Saeey e (Gl OB L e
leml-h

N = N L

= i e
e e ive
ot:igide
e ATk
-, odn
2 Sewrd
bna? wds g ws i el
T — e
V08w, Gverd pUr Ak o0l
e e g A e
T U U R e A
] RIS e U
1,00 51 den- o
v eew
.- EULRRT LR WS
e e
ro_ e sofecr

gt Ccaon S Adreee S

A"1ide L tera
o CarinEn
L R aaad
Larmrw
M.

65 Carinees Tatde_ A vern "
R el

. €18 M warrmsh fatR M

D

€% Wi s

Latioror QOMENN (IRRMR SaCCid6)
MRS ar SR IA ETR SN NIl

cIrinde
ot Pl L)

AT
HHET

AR L LS Al S LR L D)

Rl s S rM 1L TEDE 4 Tres dTY

L AR 3Ll |

Observing the registers, we see that eax is set at 0 entering this function, meaning this

function must be acquiring the correct value for eax. We can confirm this by stepping

over the function and noting the new value of eax.

W vecnomay - 20 181 - Nodde vencthar - Trvad Vi Thoad 180 - xDdby

M Nen DD Toee MO Pevduries COMd MO PO DD

Lom va taws tuBs s an e

Woni Woen slag Mk ¥ Sesets Bl e D) CdGed BN S
.

- Lol
. TSR S I T
- by
-
[0 " ——
-
- -_ el
- o (L R % 1
HE N o S - T
. "o e wov ain owaed pre do i fere] ST reiane .t e d”
. e - ad_mt -t T e
. M en W B
. a WAl Aurrsd s AocLoniad] nite B cosaNcEd . GO48 E
. BRIL e v s "wl orr ;;.
. e e ds:
. P] Tl o e i T
. 000D ROV eix Gwed orr ds: == i
. ‘ g5
: B it siIIEl
O ”"l oY e rw
. b e LENIAI IO UUMUUNUY | LML AL L XS
L4 il d dldd a’gﬂ LA h:hoa-qlﬂﬁu LEIICETED LUNUUNIS (310 NI AL N
. st e
: BK“ v::“:ﬂ"“ g&:: Fi e5)
o ™
- R L r o d o 3
. el) e o - i u —
- 4 L LR - e e
. ore TEIT 42 gei) SRR
- s AME e - D [-
ey Jv
ottt — »
w:ﬁ?‘_‘m_.
Seod pU [eanet)-loorosasc) A at
LTMATISOMATER madACEY . a i SERELE ArraMe
POyl WOep) ROt O

85

With this confirmed, resume Wesnoth and end your turn again to trigger the same
breakpoint. This time, step into the function. After stepping through a few lines, we see
that eax is being set based on the value of ecx + 60.

M amons avn S0 1Y Madhode warncth e - Thonsd Man Borasd 180 . «l2dbg - n Es
Fe ven Ochug Tracr Mugre Fovourtes Optos Help Feb 20 000

O S0 tawy taBi-sPixr w0 R¥

Hov ®oun g rctm ® Desgors W MemoryMep () Cal Stak -esm scnt Homtss Diowa S dedewces P IR

5 [T ~ ~ '
. b3} Da » ehn e
- TRl “wa - e e
» 2 £53 Camaea
*|osmerir aaei o Imor ea:.dword ptr dszjecx 01 |) R oaaces
-_"m ROV UALA R ' > — ~ - - 52 R d
— ferr - g X IS Tew oirEry
. ALBa4 090 BCO00% €9 01TiEiF)
. pas DS K000 asc) €SI OATIEED) “11de 3 _tern 5"
- "l s e ey ayy
. iFA L0400
- v W Y > OORETIFA AR AR, SR RALT A
. 05 0OA0S00
. M5O 04 4
of OALS wos) eax . :: ¢‘:-mn ;v.:\,g’
o) QBMAEE: 4 i oro 32 00
. CiFS 04 CFO TFO It
Ty
: ’§': W o 310 LETIror VRSANALA) (AR _IM L)
. L 1 -th\ LRI LestStatul COMOMA (STATUS MEIDIT ANNEN
- 2 22339%30 -.0 on 't
. [u:n»n 1IR20F 4" GI 008 'S 0053
. o4)lv 3 e e ~MoOR
. ’ﬂd 4 o4 zg ITr 553 ‘p c' cs 003 g o
. CTO424 10213001 -a- G d)(v" 1 L1321 13821102 ¢
- T Minsvee [B T T ' -
. Wes S0 mOr eCt, Owrd PUr 052 |etn o J w‘m.m.o ATEO Eapty W
. W ‘ 43 DEX 00 mOr ez, dword ptr des jecx <o) v
o P > DBt (M0
Yy oy h 4] w8
ovord otr [etneG] =017 LIDIL) =0108468 3 .w 0310C3 L
“ “"l’ SITERI T
JICATIQOSALTIT wisfOIN, enel ISALFT vSADMF T §: [empedd] QITEECH L"nvde_ 2 turn 6]
oamcim
MWorp! Wompl WOmpl WOmpd WOmeS Prvahi ellecs)V ’lt—o“x“_ e -~
Ah-* lana | =) ATERLIC A SeL
Y T Y . 00 00 00|00 00 S0 U000 OO OO B9 B wecemcmenerons : OLTMES T
RIops 8 u.n_..a_mu.u_.a_u. ;'; SR AR B . are208 Sareness | 4% dai urn g
o P e P e R L1200 OATIRE0O | “i1 e i Twrn e”
gwmw b LATL ST SO 1TEA2L0 OOMBACES | roturn £O weanoth. O0MACIE from wes
Toseec - T N L AT 1 7E1214 OOMDOOMm
COTORMC S0 80 90 ONO1 00 00 M0 00 20 |84 00 00 M| srwrmrnrnrnsfins 01TEEGCS | 4'39de 3 Surr 6"
QTOMNOC €4 #0 20 ONOA 00 00 N/OZ 00 20 W/0I 0D 00 MWId .o vivvannnns o 2 e - 2355 LLe ~‘DM'-'~-"’)G:..
SOTOMIC 90 80 90 OI4 00 00 WSO 00 20 O 0D 00 M v vrmrarnrarrinns 0155 2600 .&""ﬂh WS 5IED0
W07 OMAC A4 L0 05 JALL 10 0l MRS LD g o8 on oo -u.m..u.,. . 1781204 03TNE) :
P OBASE e 00 00 0377 CE T Ps 0t 00 00 50]07P: s x svBOT: + o o i pe B LS -
07O e 13 mua..’.u.u..uam_n (E=. . Ywbda. k. p. - >
0T OMSC TN A8A0 A5 O (2L BA S0 10107 00 00 90l (-ih"'Dv aaA
Command:]m -
[Fmand TINTY bredport al wesne, O0WACES DOSACES) [Yeme Wasned Debuprg: 8:0: 1251

For now, we will note that we need to determine the value of eex. However, eax is still
not close to the value of our gold address. Before we move on to determining the
value of ecx, we need to determine how eax is modified from the initial assignment to
reach the gold address. If we continue down the function, we see that the value of
0xA90 is being added to eax. After that, edx is loaded with the value of eax + 4. Let's
step to the address after that code to see what value is being loaded into edx.

86

B cvnsth e PID VEEE - Midule wesseth e - Theardh Main Trsad 1020 - xiddby a »

Mle Ven ODebg Tracr Pugme Feovouross Optows Melp

DVE 490 tHawy twa B «@®Pxe L0 R®
) > s
B ®own Motes @ Besgoens W Meworybao () Col Stk % Soet Mouwess O lore teferowes W10
. 0 i~ . g L
. "woe - -
. 136C 34 sub sy, 14 —
. 41 $0 mO* eal, Owrd prr |ecx-0) —_— A
® RO DX U |OT @3 ,OworQ pTr : |eax 3 e DN
. nre TesT o), ¢ Y (oTetss
- wwm 1% wmarmnrs QAW - L e
. 90 KO0 »* o0, Onrd pTr |ean) L (4 oiTieam
. DS SO0 Tes oc:,dword ptr da: eax AsC) axed : I 00000001
. TS B¢ &3, 0nr0 DTF |eas Wi OOOMO0N
. (3FA 04000 cmp od:, 4
- - y L Lbe a8 4 T SAL B4 NI, SESALIE 4
. 5 MOA0 oM ca,
. L0 08 s o0 Owrd pTr [ean-4] ')
. l:'}l mor ot Oword gtv : |eax e e ; -4
ﬂ——*:_ :KA | sub N‘:K' 0o 30 O o
g [T T 2o T
. 1ma) cun.enn,
. CRp &5 .0 LESRIFSS SOOI (ERRIR_JCCEsy
. 17 messoty, 25D LASTHTATUE COMOOORE (STATUE_MEE T Nl N
. e
. "0 odx, Q) 0% 'S 0N
. mar dwerd atr]A-.\. €5 208 M e
. - - z: :YY.' ge L]' o0dn €Y 0O iS5 oW
. noe rd tr 21 B g 13
- “‘:","‘o‘" :d‘;:r.m : lah $3(0) FFFIO0OMOMBONOONO x12rd fmpty
- e : -
. $43 DLX00M0 Por eni.dwird OLf e - ——
. 4 y | Detwit (e * 1 5 O ukocod
(L0 Stpat. %2 .;! t.WO:’ g*&"‘-' y
ea=DT 0N 3t [espc] OamCa1c
i v leserady sireeies
LAExTIOOMELS wanoth. e HEARLZS FRADI2S s .Qg.-p: DITELCS A sVl L TN s’
—~— Gawcae |
MWorp! WOmol MWOorp?! Wompd Wompd T vakchl beellocas "t_nzmu. o
Addr ey e JaerTy i 1~ o18C 1
07OMAS GO L5 22 03] 82 LTS DI NESE
20708044 84 B3 10 C|84 B3 70 @ cae *0. *Buieas oarttess | o"stde 5 mern o
0K 8 01TEEEO | “11de 1 _turn "
W0TOM0S o1 020 0l 0220 06 LIS - - L., QOWASHEE | FiTIrn TO weinot . .
" rorste —_—— e = L 3 . !
0TORFS £C A2 1) (0 o1 - $°Peceace : 0171860 .
0 TOMOR L4 . A o da ¢ O1TMRECE | 4's1de_1Kurr_§
2070BALS 01 7 CAMIEDO | whainkli. CAI D IED0
e - - ' : o : 0355 2600 | whSAOEN, (1SS D0
Soroscse|ee rw - wew dbogomodl s s IR 937508 =
DI04 FETETET S BT - S E IS %, Ywloe Ko na e
070858 CO £ i 05| SAF3 1T 0C LA 10 A5 (6 &0 BA S0 0 | Au, 80,80, *0, v« >
Commanct it -
sord Oumge QOT0NSAS -3 COMISAS (0n00000K0 ¢ brtes) Tme Waetsd Debugarg: 08 1723

We can see here that edx's value is only 4 away from our gold address, identical to
how the initial add instruction referenced it. From this, we know so far that [[ecx + 60]
+ 0xA90] + 4 is our gold address. Our next step is determining ecx.

When locating base pointers, it's important to stop each time a new register or address
is introduced and ensure that it is actually random. To do this, first make a current note
of eex's value when it is loaded into eax. In this case, that value is @x@17EECB8. Next,
make a note of the address of the instruction that assigns the value so that you can
place another breakpoint here. In this case, it will be the mov instruction at
Ox0QQ9AE7F7.

Now, detach x64dbg and then close Wesnoth. Once it is closed, start Wesnoth again,
recreate a game with the same income settings, and reattach x64dbg. Place a
breakpoint at the address noted (0x@@9AE7F7) and then end your turn. When the
breakpoint pops, observe the new value of ecx. In this case, it's the exact same as the
last time (@x@17EECBS). Therefore, we know that this must represent a base pointer that
doesn't change. If it did change, we would have to continue with the reversing process.

87

2.8.6 Change

With our base pointer found, we can now save its value for use in future projects. From
our reversing, we know that the value of the player's gold in Wesnoth is always at:
[[0x@17EECB8 + Ox60] + OxA9@] + 4. To simplify, we know that @x@17EECB8 +
0x60 will always be @x@17EED18, so the actual offset can be represented as:
[[@xQ17EED18] + 0xA9Q] + 4.

Cheat Engine allows us to manually add pointers with offsets as addresses. We can use
this to verify that our value is correct. First, open Cheat Engine and attach it to
Wesnoth. After attaching, select the Add Address Manually button.

SRR ——— o LMo
¥, Ndd addrzes X b
Azdress: [Unrandomizer
| -7 I ¥ [C Enakle Spzednzce
Dzscription 0J023000000C0
Ner st opinn
lyoe |m Zvecutable
qkytes ~
| Puinte: iment
(014 Cencel Dgts

_JPaus=the Zame wyAlescarn ng

A"

NMemory vicw @ Acd Addrcss Manua ly

ave Lescrpren Addrzss Iyp: \aluz

In the box that pops up, select the checkbox for Pointer. When doing this, Cheat
Engine will prompt you for a base address and one offset. Type in @x@17EED18 as the
base address and 0xA90 as the offset. Then add another offset and type in 4. This is all
the information we found while reversing.

88

a Add address
Address:
055BF424

Description

=256...

Gold

Type
4 Bytes

Pointer

< || 4 | > 055BF420+4 = 055BF424

< || a%0 || > |[03906310+A90] -> 055BF420
Ox17EED18 ->03906310
Add Offset Remove Offset
OK Cancel

In the Address box at the top, you should notice that Cheat Engine has correctly

resolved our offset to the current amount of gold that we have. If you close and restart
Wesnoth, this pointer will then change to the new value for gold.

89

Part 3
Programming

3.1 Programming
Fundamentals

3.1.1 Overview

In the previous chapters, we explored techniques to hack Wesnoth, including changing
memory (such as gold) and changing code (such as recruiting units). However, all of
these changes only persisted until we closed Wesnoth. To regain these hacks upon
reopening the game, we would then have to repeat the initial process in a memory
scanner or debugger.

This is both tedious and impossible to distribute to a larger audience. However, since
we can now defeat DMA, we know that any memory we need to change is always in a
static location. Because of this, we can create a set of instructions that contains the
changes we wish to make. Creating this set of instructions in a way that a computer can
understand is known as programming. By programming hacks, we can create programs
that can be executed and will automatically change the memory we care about. We can
also distribute these programs to other people who want to experiment with our hacks.

Programming, as a whole, is too large of a topic to comprehensively cover in these
chapters. Instead, we will focus on the subset of programming that is relevant for
creating hacks.

3.1.2 Programming Languages

In Chapter 1.1, we briefly covered programming languages. Programming languages
allow code to be written in a human-readable form. This code is then translated down
to instructions that a CPU can understand. There are many programming languages,
and they can be broken down into roughly two categories: what they execute on, and
how they execute.

Programming languages can create code that either executes directly on a CPU or
executes through an interpreter. An interpreter works by dynamically translating the
initial code into a form that the CPU can understand. These two types are known as

21

compiled languages and interpreted languages, respectively. Programming languages
can also either execute instructions in order (top to bottom), or through the declaration
and resolution of functions. These types are known as imperative and functional,
respectively.

A language can be classified by applying those two modifiers. For example, Cis a
compiled, imperative language. Java is an interpreted, imperative language. Haskell is
an example of a compiled, functional language. Interpreted languages can be
compiled as well, often by bundling the interpreter and the initial instructions together.

There is no correct or best language. Some languages are better suited for different
purposes, but all languages can achieve every purpose. However, when programming
game hacks, we have several restrictions that limit our choice of language. The
language we pick needs to support three main features:

. Direct access to the Windows API
¢ Modification of other applications' memory
. Loaded and executed on the CPU

All of these requirements will be explained later, but they basically exclude interpreted
languages. In addition, languages that don't allow direct memory access, such as Java,
are excluded.

3.1.3 C++

There are several languages that support the three criteria above. These include C and
C#, as well as compiled versions of python. However, C++ offers the best combination
of high-level language features (such as classes and strings) and low-level direct access
to memory. This makes C++ ideal for programming game hacks.

C++ is a compiled, imperative language. It is a relatively difficult language to learn, but
we will only need to understand a subset of its features to create game hacks. One of
its most important features, for us, is the ability to create pointers that can directly
modify memory addresses.

92

3.1.4 Pointers

Pointers are another complex topic that we will only cover briefly. Pointers are a type of
variable that point to another section of memory. For example, take the following C++
code:

int x = 5;
int *y = &x;

In C++, a * represents a pointer declaration. The & returns the address of a variable.
So, after executing this code, the variable y points to the variable x. Consider the
following code:

This code will dereference (or get the address it points at) y and then assign that value
to 6. After this code executes, the variable x will also be 6, since this was the value that
y points to.

Applying this to game hacking, let’s say we find a gold value at @x12345678 and this
value is not dynamically allocated. If we were to load our C++ program into the game's
address space, we could use a pointer to modify the value of the gold:

int *gold = (int*)0x12345678;
*gold = 999;

After executing, the gold value at @x12345678 will now be set to 999. Pointers give us
a large amount of control over a game’s memory, but they can be hard to understand.
We will explore them more in following chapters.

3.1.5 Types of Hacks

There are three main types of game hacks that can be programmed. These are:

e External executables
e Injected DLLs (dynamic-link libraries)
o Custom wrappers

93

Each of these has its own use-case. External executables are stand-alone programs that
can be executed normally. These executables use functions built into Windows, known
as Application Programming Interfaces (API's), to read and modify memory of another
executable. By contrast, injected DLL's need to be loaded into the game's memory in
some way. Once loaded, they execute within the memory of the game and can directly
access the game's memory through pointers. Custom wrappers are used when creating
hacks that target the game's drawing libraries, such as DirectX and OpenGL. By
loading a custom version of these libraries that "wrap" the original functionality, we can
cause the game's drawing logic to be altered.

94

3.2 External Memory
Hack

3.2.1 Target

Our target in this chapter will be Wesnoth 1.14.9.

3.2.2 [dentify

In this chapter, we will create a C++ program that will modify a player's gold in
Wesnoth.

3.2.3 Understand

In Chapter 2.8, we defeated DMA in Wesnoth and located the player's base pointer at
0x0@17EECB8. We then determined the offsets necessary to locate the player's gold
from the base pointer. This allowed us to start at a static address, add a series of static
offsets, and reach a dynamic address.

Since these addresses and offsets are static, we can create a program to perform this
operation. We covered several approaches to do this in Chapter 3.1. In this chapter, we
will create an external executable.

3.2.4 Visual Studio

To create C++ programs, we need a compiler and a linker. A compiler is used to turn
high-level language code into opcodes. A linker is used to then create an executable
that the OS understands from these opcodes. These two components are normally
bundled into an Integrated Development Environment, or IDE. IDE’s contain other
components as well, such as code-completion and interactive debugging. Visual Studio
is an IDE that Microsoft has released for Windows. The community edition is free to

95

download and use in personal projects. It can be installed using Chocolatey, which we
installed when first setting up the VM. To do so, open up Command Prompt or
Powershell and run the following command:

choco install visualstudio2@19community

In Visual Studio, source code files are contained within projects. Several of these
projects can be contained within a solution. For example, the Visual Studio solution for
Wesnoth might look like:

Game - Solution
Engine - Project
Player.cpp - Source Code
main.cpp - Source Code
UI - Project

Network - Project

To create a C++ solution, we will first need to install some C++ components. This can
be done by selecting the Install more tools and features link, and then selecting
Desktop development with C++ in the wizard.

C+- All plattormrs

No exact matches found

Mot fird ng what you'rz lookirg for?

*. Desktop devzlopment with C++ v
I—_J.] Ruild modern C++ apps for Windows using taals of your

choice, Including MSVC, Clang, CMake or MS3uild,

96

With these components installed, we can now create C++ projects and compile them.

3.2.5 Creating Projects

Once these components are installed, create an empty C++ project and name it
ExternalMemoryHack.

All platforms All projzct types

LY Empty Pro.ect
N]

StaLlrom sudaloh with C=+ Tur Wndows, Piovid=s nu sla:ling [Nes,

Comsue Ce+ Windowr:

EITI pty Project Curisule C+r Windows

Prajart name

kxternaMemonyHack
Lucalion

Ci\Jszrs\ EUser\source\repos
Solut.on name (j)

kxternaMemonyHack

: Place solution and project in the szme directory

With the new project created, we can now add our source code file that will contain all
of our code. To do this, right-click on Source Files and select Add -> New [tem:

97

Naw lrem .. Thil=-Shift+ 4
bastire ftem.. shit+AlE-A
Naw Filter

(lass. .

Rezource..

Rescurce

Ws=b

Ltlity

2roperty Sheets

rron.cog]

IS Extemal Dev=ndenci=s
“3 HzaderFiles
3 Resource Files

Add

Class Wizaid...

Scopeto This

Cul+3hift+X

New Sululion Explure View

Cut
Cupy

Defautt
Ce+ File (epp)
Header File (H)

C++ Closs

Ctrl+ X
Cul+C

Vivua! C—+ Type:
17R
Visua/ C-+

Visua/ C-+

CAUsers\IZUsef\source\repos’ ExternalMemoryHack\BxternalMzmoryHa ~ Browse. .

With the project and source file created, we can now begin programming.

3.2.6 C++ Basics

C++ has many features and is a versatile language. For our purposes, we will focus on
the most important ones for creating hacks. For this chapter, we need to know two
things about the language:

1. Programs start at a function called main. This function has to return a value.
2. Programs can call other functions built into Windows.

Any C++ executable needs to have a main function that returns an integer. This
function takes two parameters, which are not important to know at the moment. When
executed, the OS looks for and executes this function. When the function returns, it
signals to the OS that the program is finished executing.

In addition to functions we create, we can call other functions that are built into
Windows. Windows has many API’s to do things like displaying text, playing sounds,
and creating files. Windows also has API's that allow us to read and write values to an
address in a process. These are what we will use to create our hack.

To use these functions, we need to include certain header files. Header files contain
definitions for functions that are defined outside of our source file. To read and write
memory, we will need to include the header file Windows.h.

3.2.7 Reading Values

We need to read several values in Wesnoth to locate our gold value. The API to read
another process's memory is called ReadProcessMemory. If you google this name, the
first result will be documentation by Microsoft. This documentation describes how the
APl works, including what parameters it takes and what values it returns.

By examining this documentation, we can determine what values we need to provide.
For any values we still need, we can then determine how to get them.

99

https://docs.microsoft.com/en-us/windows/win32/api/memoryapi/nf-memoryapi-readprocessmemory

ReadProcessMemory's function definition is:

BOOL ReadProcessMemory(
HANDLE hProcess,
LPCVOID 1pBaseAddress,
LPVOID T1pBuffer,
SIZE_T nSize,
SIZE_T *1pNumberOfBytesRead

);

Looking at the code block above, we can start at the first parameter and work our way
down to determine what values we need. First, we do not have a handle to a process,
so we will need to find that. We will discuss how to do this in the next section. We have
the base address (in this case, our base pointer). The buffer needs to be provided by
us, so we will need to create that. The size parameter will be the size of the data to
read. In this case, the size will be 4 bytes, due to the size of the registers we saw while
reversing. Finally, we will need to create another variable to hold the number of bytes
actually read when the function is executed.

While this might seem overwhelming, this gives us a starting point to program from.
First, we know that we need to include Windows.h so that we can use
ReadProcessMemory:

#include <Windows.h>

Next, since this is a C++ executable, we will create our main function:

int main(int argc, char** argv) {

return 0;

¥

Finally, in the main function, above the return statement, we can insert our call to
ReadProcessMemory. For values we don't have yet, we will put in a variable name. As
we figure out how to retrieve these values, we can then assign these variables.

ReadProcessMemory(wesnoth_process, @Ox@17EECB8, gold_value, 4, bytes_read);

100

Both the gold_value and bytes_read values are provided by us and populated by the
API. Therefore, we need to initialize two variables to hold these values. Since we are
reading 4 bytes, these variables need to be large enough to hold amounts of this size.
One option to accomplish this is to use a DWORD, which is 32 bits (or 4 bytes) long.
We need to place these declarations above the call to ReadProcessMemory:

DWORD gold_value
DWORD bytes_read

o
(SIS

Since both of these parameters are expected to be pointers, we need to also change
our ReadProcessMemory call. Instead of passing the variable's value, we need to pass
the address of these variables using &:

ReadProcessMemory(wesnoth_process, Ox@17EECB8, &gold_value, 4, &bytes_read);

3.2.8 Opening Processes

Our next step is retrieving a process handle. To do this, we can use an API called
OpenProcess. The definition for this APl is:

HANDLE OpenProcess(
DWORD dwDesiredAccess,
BOOL bInheritHandle,
DWORD dwProcessId

);

From this definition, we see that OpenProcess returns a handle to a process. This
handle can be used as the first parameter for ReadProcessMemory. Looking at the
documentation, we want our desired access to be PROCESS_ALL_ACCESS, so that we
can both read and write to the process. The second parameter does not matter for
what we are doing, so we will set it to the value of true. We will need to find the last
parameter, so for now, we will create a variable. Since we need the result of this
function to call ReadProcessMemory, we will place the call to it above
ReadProcessMemory. Our code should now look like:

HANDLE wesnoth_process = OpenProcess(PROCESS_ALL_ACCESS, true, process_id);

DWORD gold_value = 0;

101

https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-dtyp/262627d8-3418-4627-9218-4ffe110850b2
https://docs.microsoft.com/en-us/windows/win32/api/processthreadsapi/nf-processthreadsapi-openprocess

DWORD bytes_read = 0;
ReadProcessMemory(wesnoth_process, 0x@17EECB8, &gold_value, 4, &bytes_read);

Next, we will retrieve a process_id for the OpenProcess call. Similar to the previous two
API's, we will use another API and then fill in any information we need. In this case, the
AP| will be GetWindowThreadProcessld. This API retrieves a process ID when provided
with a window handle, which is different than a process handle. The definition for this
APl is

DWORD GetWindowThreadProcessId(
HWND hWnd,
LPDWORD 1pdwProcessId

);

This function requires a handle to a window and a variable to hold the process ID. Just
like before, we will add this code above our call to OpenProcess:

DWORD process_id = 0;
GetWindowThreadProcessId(wesnoth_window, &process_id);

To get a window handle, we can use the APl FindWindow. This function takes the name
of a window title and returns a handle to the window. The definition is:

HWND FindWindowA(
LPCSTR 1pClassName,
LPCSTR 1pWindowName

);

Since we want to search all windows, we will set the first parameter to NULL. For the
second parameter, we know the name of the Wesnoth window, as it is displayed in the
game's title bar. We can insert this final call at the top of our main function. Right now,
our code will look like:

#include <Windows.h>

int main(int argc, char** argv) {
HWND wesnoth_window = FindWindow(NULL, "The Battle for Wesnoth - 1.14.9");

DWORD process_id = 0;

102

https://docs.microsoft.com/en-us/windows/win32/api/winuser/nf-winuser-getwindowthreadprocessid
https://docs.microsoft.com/en-us/windows/win32/api/winuser/nf-winuser-findwindowa

GetWindowThreadProcessId(wesnoth_window, &process_id);

HANDLE wesnoth_process = OpenProcess(PROCESS_ALL_ACCESS, true, process_id);

DWORD gold_value = 0;

DWORD bytes_read = 0;

ReadProcessMemory(wesnoth_process, 0x017EECB8, &gold_value, 4,
&bytes_read);

return 0;

}

3.2.9 Casting Parameters

Visual Studio will display several errors for the code we have written. This is because we
have not properly casted two of our variables. As a result, the compiler cannot
understand how we want to pass data to a function. If we want to compile our
program, we will need to fix these errors. Luckily, by reading the Error List in Visual
Studio, we can determine what we need to do to fix these errors.

Vv @D0aTEN e (% Ll - Irtell tense
Mozgest
ayarran v bps weaidian e s pa b aiiipaarada o ps "URCASTES ExicrmaMoruwgHaic

sbcalipaardo e bps U0 | ZIET) X FREITINL TR

e CAVETRS carnoiwornal sigaanar 2 feoon "connd chae £

ema Mo Haie
CUSID LMD SITE TSTE T ol woran

Feennbdemary lase

Let's address the two ReadProcessMemory errors that occur on Line 13 of the code.
The first error for Line 13 is argument of type "int" is compatible with parameter type

103

"LPCVOID". This indicates that we have a parameter that is an integer that is supposed
to be a LPCVOID. The second error, cannot convert argument 2 from 'int' to
'LPCVOID', indicates which parameter this is. Argument 2 is our address @x@17EECBS. If
we google LPCVOID, the first result is Microsoft's documentation regarding LPCVOID.
The documentation shows us that LPCVOID is defined as a void*:

typedef const void* LPCVOID;

To solve these errors, we can cast our address as a void*. The resulting code looks like:

ReadProcessMemory(wesnoth_process, (void*)0x@17EECB8, &gold_value, 4,
&bytes_read);

With this, those errors will disappear. Now we can examine the second set of errors
that occur on Line 4, regarding the FindWindow call. These errors indicate that the The
Battle for Wesnoth - 1.14.9 string is not cast correctly. It is a const char* and needs to
be cast as a LPCWSTR. To do this, we can prefix the string with an L. Our FindWindow
call now looks like:

HWND wesnoth_window = FindWindow(NULL, L"The Battle for Wesnoth - 1.14.9”);

After making this change, the errors will disappear and we can now compile and
execute our program. To do this, go to the Build menu item and select Build Solution.
Once this completes, we will have a program that we can execute.

Fil Waw Man Fuisl Mdz Tid Anadyes

lal= althar

O - :_j';'.iu" [

eail= Tarhar
! . . - .
maeepy' - X o ERTE-FER T
; @-‘-‘m:l'sh'n\'/ Ik gl lul sograr Jabac

ozehranms on toliton

Lior Laze Nrayanan Lateralbdem,

2im Ty

Jdxich Lund..

Lavanmhan Manager.

=TT CulF?

forlorzAransor bz Clriosedti A8 =0

104

https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-dtyp/66996877-9dd4-477d-a811-30e6c1a5525d

3.2.10 Debugging

To verify that this code works, we need to make sure that we are actually reading the
correct value at the memory address @x@17EECB8. To do this, we will debug our
program inside Visual Studio and compare the results of our ReadProcessMemory call
against Cheat Engine.

First, open up Cheat Engine and manually add the address @x@17EECB8. Then, set a
breakpoint on the ReadProcessMemory line. This can be done by left-clicking on the
area to the left of the line of code you wish to breakpoint. If done correctly, a red circle
will appear.

WORD gold value =
WORD bytes_read =
ReadProcessMemory (w

S XD

Q
rt

sn

(1]

h_proc

return 0; =Zémselap

Next, click on the Local Windows Debugger button at the top of the IDE. This will
begin executing our program with a debugger attached.

Debug Test Analyze Tools Exdensions Window Help

Debug =~ x86 « P Local Windows Debugger ~

(Global Scope)

-

C=22 ..\.’

hreadProcess

105

Since we have written the source code, debugging our program will be far easier than
debugging Wesnoth. When our breakpoint is reached, the debugger will pop and let
us explore various elements of the code, including our variables. These variables will
be shown in the bottom left of the IDE. To make sure we are reading memory correctly,
we want to look at the gold_value variable and make sure its value matches Cheat
Engine.

: €. OhemEngion 71
™

fim o Teow QW rey

Adiress Valoe mevidus fun Scan

Value
Hes ‘
Scan Type Exadt Value
Vilue Type 4 Bytee
Merrory San Optoes
AN
Rant
Sep
5) wabie
] CopyOnihrte
(A Fat S . &) A
1 Fat Scan
Lo Dv

| Pause thegame vhie sian

Mervory View 1:‘
Actve Decrpton 3o Tvpe e o3
L] Nedescrighion DITEECES 4 Byter 2D63538)

fharied Optoen

Since the values match, we know that we are correctly reading memory in Wesnoth. Hit
the Continue button at the top of the IDE to finish executing our program. Now we can
move on to finding our gold value.

3.2.11 DMA

Since we can read memory, we can now retrieve our gold value. In Chapter 2.8, we
determined that our gold address is stored at [[@x@17EECB8 + 0x60] + 0xA90] + 4.
This can be further simplified to [[@x@17EED18] + @xA9@] + 4. To retrieve the gold

address in our program, we can first read the value at @x@17EED18, then add 0xA90 to

106

that value. We can then read this address and add 4 to it. Once we have done that, we
will have our gold address.

To do this entire process, we can use the ReadProcessMemory call identically to our
previous code. First, we will read in the value of [[@x@17EED18] + @xA9Q].

DWORD gold_value = 0;

DWORD bytes_read = 0;

ReadProcessMemory(wesnoth_process, (void*)0x@17EED18, &gold_value, 4,
&bytes_read);

gold_value += 0xA90;
ReadProcessMemory(wesnoth_process, (void*)gold_value, &gold_value, 4,
&bytes_read);

We can use Cheat Engine to examine offsets to ensure that we are reading the value
correctly. We can then use a breakpoint on the second ReadProcessMemory call to
ensure that the values match. Since Visual Studio displays variables in a decimal format,
we will need to convert these numbers to hexadecimal to check.

Pt EOL e LS Hep

. 000000 - weseroth exe

ound 0
Frevizas Fest Scan

Adens

1R

e
He [)
Scan Type Bxact Value v L formul

Value Type 4 Byes LI het

1% Upbors

o Uneandomoee
[Evable Spestha
‘e) Cencurante
. InVnte
* Mayrmet
an -
Laat Dvyrs

the game while wcanrng

Menory

88.851,248 The'e's nothng 1

HEX 5&8 G330
DEC 885128

Advred Op

107

Since our values match, we can add a final offset of 4 to the address to retrieve our
gold address. Next, we will focus on writing memory.

gold_value += 4;

3.2.12 Writing Memory

The API to write to another process's memory is called WriteProcessMemory. Its
definition is very similar to ReadProcessMemory:

BOOL WriteProcessMemory(
HANDLE hProcess,
LPVOID 1pBaseAddress,
LPCVOID 1pBuffer,
SIZE_T nSize,
SIZE_T *1pNumberOfBytesWritten

),

The major difference is that this function writes the value of a buffer into a section of a
memory, instead of reading a section of memory into a buffer. Like before, we will need
to declare two variables for the buffer and the number of bytes written.

DWORD new_gold_value = 555;
DWORD bytes_written = 0;

Then, we can call WriteProcessMemory in an almost identical manner to
ReadProcessMemory. Like with ReadProcessMemory, we will cast our gold_value to
(void*):

WriteProcessMemory(wesnoth_process, (void*)gold_value, &new_gold_value, 4,
&bytes_written);

When this is executed, our gold will be set to 555 and our hack will be complete. We
can now run this executable whenever we want to change our gold. We can also
distribute it to other players to execute on their machines.

108

https://docs.microsoft.com/en-us/windows/win32/api/memoryapi/nf-memoryapi-writeprocessmemory

VU TteBattle for Weenoth - 1,14,2

Mens | Actions o 1 &

The full code for this chapter is available in Appendix A for comparison.

109

3.3 DLL Memory
Hack

3.3.1 Target

Our target in this chapter will be Wesnoth 1.14.9.

3.3.2 Identify

In this chapter, we will create a dynamic-link library (DLL) that will modify the player's
gold in Wesnoth. This DLL will modify the player's gold every time the user presses a
certain key.

3.3.3 Understand

In the previous chapter, we created an external C++ program that used
ReadProcessMemory and WriteProcessMemory to modify the player's gold. While
these API's are useful, they also have several limitations. Due to their definitions, they
require us to cast parameters into a defined type. Their definitions make it easy to
modify simple values like gold, but they make it difficult to read and write full classes or
complex data types.

Since these API’s are executed from an external program, we would struggle to do
things like listen to key presses from the game. In addition, if we wanted to create a
code cave in the game, we would have to manually convert that code cave into its
opcode representation. We would then need to find a memory location to place it at
for WriteProcessMemory to work.

To bypass all of these limitations, we can instead inject a DLL into Wesnoth. Once
injected, this DLL will be loaded into the game and can directly access the game's
memory through the use of pointers. We can also create threads that execute inside
the game, allowing us to listen for user input and other events.

110

3.3.4 Creating DLLs

First, create an empty project, this time named InternalMemoryHack. After the project

is created, add a main.cpp file. The process to do these steps is identical to the

previous chapter.

By default, empty projects in Visual Studios are set to build as executables. To build a
DLL, we will need to change the project's Configuration Type. This can be done in the
project's preferences. First, right-click on the project's name and select the Properties

menu item.

©-C -

Salurtinn Fyplarsr

::!3' .“E-" "'; 11—&]’ .

T Selatiar aterrsMemaryHack' (1 0F

4 [y IntermalMemaryHark
=8 Refzrences
3 Heade Files
Ml Resourcs Tilas
4 ol Source Tilag
s %3 morrop

Funild sueceerded

IS Brlernzl Deperdences

Juild
S T [

Clean

View

Ar=yreane Cace Cleanun
ro=ct C

ly
darozl Pirogecls
Szopeto This

New Solation Dxplorer Visw
Juild Deperdancies

A

“lass Wizand...

‘Maracs NuCet Packages
Satas Statup Proac
Jeblg

Saurce Carsral

“erian =

Jriosd Project

~oad Direct Dapencarzias of Proac:
~vad Enlie Dependency hiee o PropeL
Reian Sululion

Display Brawsing Rommhass Srars

Clear Eravising Matabase Frrnes

Toen Falerria File Fyrlnecr

Jrepeiliey

fll+Enle:

111

Next, under Configuration Properties, choose General. Then, change the Configuration
Type from Application to Dynamic Library. Choose Apply and then hit OK to close the
modal.

Tomigueztont | esrvelDesuq) “| Fattom | cieelWiniZ w || ferfiguratcr Monzesr..,
b ol gunation: Frapel ». v General Properties
zenc Curpes D rsczery 150 monDi” 3 Zevigurst el
Acranced TS EITTRS [B b IR S0l g iy,
'..e_bgc ara) Sfqe: Jave T PTo A g,
- Lo 0 ¥t Uynamic Liarary 1.cll)
2 FPTR ey Mohafde
ink - ..
‘ "l s Flefom Teclzer Moolization (eve)
» Manifen Tocl - - -
- L1 Linguays tandand vprainie Lilwan g Cadl)
Y AN Taovewen Gireales
szt laey ()
s grcwszintoraten .
Juild Dvarts =y
’ . - - <rastirem patent or project ¢ efaulte>
» umormCuic Step

volede Ay

 Conbiguratien lype
Specifies Tvos of program dsirg garerated le 3 eezutsble statz (k2o cyne mic libesry. ..

< Lwer ALEY

Our project will now be built as a DLL instead of an executable.

3.3.5 DLL Basics

DLL's cannot be executed by themselves. Instead, they need to be loaded into an
executable. DLL’s allow developers to create libraries of functions that can be loaded
dynamically. These libraries can then be used across several executables and reduce
the amount of code that developers need to write.

For example, user32.dll contains code that displays modals, alerts, and other Windows
Ul elements. Most executables released for Windows load this DLL automatically and
gain access to this functionality without needing the original code. If Microsoft updates
this code and changes how an alert box looks, all executables that load this library will
benefit from this change.

112

DLLs have several differences from normal executables. For our purposes, we need to
know three of them:

1. DLLSs have a DlIMain function instead of a main function.

2. This DIlIMain function is called when a process loads or unloads a DLL.

3. DLLSs run inside their parent process. Variables declared in DLL's are created in
the parent's memory.

The DlIMain function has different parameters from a main function. Its definition is:

BOOL WINAPI D11Main(
In HINSTANCE hinstDLL,
In DWORD fdwReason,
In LPVOID 1pvReserved

);

The fdwReason parameter contains the reason that the DIIMain function was called.
For example, when the DLL is loaded into a process, this parameter will hold the value
of 1. This value is also defined by the constant DLL_PROCESS_ATTACH. To ensure that
our code only executes once, we will check this parameter in our final hack.

Since DLL's execute in another process's memory, we will need to load them in some
manner. In hacking, this is often known as injecting, as we are falsely loading our DLL
into a process. It can often be hard to detect if a DLL has injected successfully. One
approach is to attach a debugger to a process and observe all of the process's loaded
modules. However, this approach can be time-consuming and is not always feasible.
Another approach is to create a DLL that will display an obvious indicator when it is
injected. This is the approach we will use to test our DLL injection.

3.3.6 MessageBox

The Windows API has a function to display a message box in a process. The definition
for this function is:

int MessageBox(
HWND hWnd,
LPCTSTR 1pText,
LPCTSTR 1pCaption,
UINT uType

),

113

https://docs.microsoft.com/en-us/windows/win32/dlls/dllmain
https://docs.microsoft.com/en-us/windows/win32/api/winuser/nf-winuser-messagebox

However, due to how C++ handles parameter casting, we can ignore the types for
these values. By calling the MessageBox function like below, we will display a blank
message box with an Error title and no text.

MessageBox(0,0,0,0);

We can use this behavior to ensure that our DLL is injected successfully into Wesnoth.
In main.cpp, add the following code:

#include <Windows.h>

BOOL WINAPI D11Main(HINSTANCE hinstDLL, DWORD fdwReason, LPVOID
1pvReserved) {
MessageBox(0,0,0,0);

return true;

}

This code will make our DLL display a message box inside the parent process whenever
the DLL is loaded or unloaded. We will use this behavior to ensure that our DLL is
being injected successfully. Build this code using the Build option to produce a DLL.
This DLL will be placed in the location you specified when creating the project. By
default on our lab machine, this will be C:\Users\I[EUser\source\repos\
InternalMemoryHack\Debug\InternalMemoryHack.dll.

3.3.7 Injecting DLLs

DLL’s are normally loaded into a process through the use of the LoadLibrary API.
However, since we are not modifying the original source code of the game, we will
need to find another way to load our DLL into Wesnoth.

One approach we can use is a DLL injector. DLL injectors are external programs that
create a thread inside the target process. This is done through the use of the API
CreateRemoteThread. This thread then calls the LoadLibrary APl inside the process.
In Chapter 7.1, we will cover how to create a DLL injector.

For this chapter, we will use a feature of Windows that will inject user-defined DLL’ into
every executable that is started. This feature is called Applnit_DLLs and can be
controlled via the registry.

114

Since this feature is often used by malware, Windows 10 requires Secure Boot to be
disabled for the feature to work. By default, VirtualBox does not support this feature
and it will be disabled. If you are using actual hardware, you will need to disable it
through the BIOS. Its current state can be determined through the System Information
program:

& Saianl-faandia - . ~
l. BJi. View Hop

m e vl ~
M 113remare REsairees 23 Nzmz Mazrasot WNindons 10 Stbepass Sanaer
[} gt Wi 1T aeh2 Bl 1008
Samwirz EmercnmIm D D e lizn Tl fiami alile
H X BYTT 2% ITEE Bz sl G sl v
Sl Narre LR TR A (Ol)
Spehem Manirasres 1ntec 5EH
nctem Mece AtuaBox
etem Type wd-tazzd *C
Incbem KL Urzippe ted
1LY Pl Lt s T 0o JOTUM LPL €Y L0002 2353 M 2 Curs s
[HCNRCVEDNPEITR VIS TR tad B L S (T L [FL o Pk R S
SRS Aeesinn PR
LML HER Iwipacy
srEcand Menirteurnr Creee Fneancthan
£3322Cand Trocun AtuaBox
faszicardverscn 12
sgla reblz
St 20U tlale Urauppbed
=l Conliaacn LLETH [EPRN & HUETIION B
VA e ey [SOACITH TN
Syl Tumdiary LEARNITH TN N TR b ~
J »
U wl kHnd Loz knd
LI3saws ceerter raagany acly L Searcn zzbezery nsmas any

Once Secure Boot is disabled, we need to modify the registry to enable Applnit_DLLs.
This can be done by first opening up the regedit program. The Windows registry
contains keys and values that change OS and individual program functionality. It is
similar to the file system on Windows in that these keys and values are contained in
paths. The path for the Applnit_DLL feature on 64-bit Windows computers is
Computer\HKEY_LOCAL_MACHINE\SOFTWARE\WOWé6432Node\Microsoft\
Windows NT\CurrentVersion\Windows. Navigate to this location in regedit.

115

N Reooy Eotw

tvw"d ITY_SOTAL MAZI BHE SOTTWARD ST hode o oo Y b NG e st i o |

—————==rrrrrr T T IEve s .

) Bl iitgaia = Poed nCoT pap—
VaowfordiesTibnt Wicent Dit: MG C\Burs B arasror wped nbrasMancoi...
o R i OoctendTrrens 810 OW24D RN 61
“m"w 1 Ourctapobonsd s 10 SN Atocecor: ()
2OC Etorviarns = UewCetaet. i n
NEL W Oned gl MG OWHD Qledeter ()

P iDmep Areadin Db B Pl Dasinges . BIGNWED OWDI0N000" ()

Moot ance B dencmras. MO OWRD QU002 " 1o (Omm)

[——y o oabescd sGsr I rdeSovca

[P y— ST w0 oW CC0000C0 (1)
rorgs e S Netiputth. MO X LA e

(- T PP P L) O DR TR

e -0 " v

Cpariit Neses [} (ST Tee— YT 0000 14 (I

Pretu W TasmesodRa. RIG ST E

Dwea B GO e bt Won. PG OWHED Q00000025 ¢4,

Petteictng Bt emtian. B1G DWRD ODO0OTM { W)

:: Hutccat. M0 WD QUON I O

Pwdolot

o s

Sheddy

Secicht

L Pl Pl 0

S

cwan

Catrms bt rom

Trre Zonn

Tibwimbos

Touryg

lpvate

Virsomausm

Vetusunter

vt v

Applnit_DLLs will load any DLLSs specified in the Applnit_DLLs value into all started
programs. Double-click on the Appinit_DLLs value and change the string to the

location of our DLL:
Nam=

A (Ude]

88 Applaz DLL:

4 DdeSendTimzout
o Deskop ler o a...
3t DevieeMutSzh

lype Llaka

ot 5L (LT

ALC SZ ChUzer Elser\zource'repa:hInterna Mzmornykac
REC_DWQRD 0402002002 (0)

e _nwat IR DT T

.’_o',}: Frahlevaumle

74 Dwm rputls EditSrng

Velowrieme.

I GLIProcassl |
74 LeadApplniz,
2L Natural rpisl
Hi_'bl vlvuwn\Ve
'_b Speoler

|._|"t Tarcadlnrespa..

26 |ranz= smonlle:
T USIRNesbeW i o,
% USERPoszMzssa.

o USTRPraces=l I» ..

3!’)_' leunSe: viceli |.°ppl|-|._u =
Velowdela.

By wuur w'ye

=t VLT
L te

A2 DWORD
RZC_DWORD
AUTC_OVNORN

peshbilerielWey oyl ack DLy

[ok]| ranen

Loy AV o vHack |

1A NAX 1123 AN
)

0502003032 (50}
00200272 (10200)
D007 1 (10700)

116

Next, we need to enable the feature by changing the value of LoadApplnit_DLLs. After
making this change, our DLL will be loaded into every new process. When the value is
set at 1, this feature will be enabled When it is O, this feature will be disabled.

R Rt

J,-_{..DIPr..e.. Ia1. "[.._["AOI!D M‘CO" 0! I)O'C:
20 corseraclin b AL corf.ceccscrvize
m valfpliit P 2FE DAORN DR P OO W]
4V Yazursl aput 2w ‘[.._SZ Hinpetel
:.'-q '™ A 2o Ao AMAL AL AR L ’)
.,L.] BT JWURD 122 o Nt
ol
Sl
ah Voo e
- |LeazAgak1_DLs |
,'_.'g Vo bl Hce
w3l [1 1| e adezamal
ks ad
04 T

After these changes, the registry key should look like:

Name

b (Default
Applnit CLLs

lat)
%s|NdeSerdTimanr
%5 Necktnp—eapl .

!]I"wanNmsPlsrr

&) Pwminp t Jees...
&5 FnahleDaminpi .
%) CNIPrar=:cHan .

ab|lconSenicel i

il nadfpplnit_DI <

ab|NaturalinaurHa...
-y] Shitdnwn'Nzmi...

‘E',] LSFRPmcessHA...

ype
REG_SZ
REG_SZ
RFG_NDWNRN
RFG_NDWORN
RFG_S7
RFG_NDWNRN
RFG_NDWNRN
RFG_NDWNRN
RFG_S7
RFG_DWNRN
RFG_S7
RFG_DWNRN
RFG_S7
RFG_NDWORN

. RFG_S7

RFG_DWNRN
RFG_NDWORN
RFG_NWOIRN

Dat:c

mrmsvc
CAUsers\EUsensourze'repesy nternalMzmonyHac...
MONNNNON (i

mONNNNONT (1)

°5

MmONNNNONT (1)

MmONNNNON7 (71

MOONORTIN (1NN

lconCodecService. Al

mONNNNONT (1)

Ninput.Hll

InFAHFFF (£7Q40F7795)

yP<

MONNONTFA (500)

a0

MONNNNNR? (3

MONNORTIN (1NN

M OOOORT 10 (170000

117

We can now start Wesnoth. Upon starting the game, several message boxes should
appear, indicating that our DLL was injected successfully and is being both loaded and
unloaded.

One important thing to remember is that Applnit_DLL will inject DLLs into every
started process. This includes the process spawned to build our DLL as we make
changes. To avoid any issues, we will have to disable this feature when we build our
DLL. Make sure, after testing the DLL, to set the value of LoadApplnit_DLLs to 0. After
building our DLL, set this value back to 1 to re-enable DLL injection.

3.3.8 Creating Threads

Now that we have verified that DLL injection is working, we can start programming our
hack. We want this DLL to wait for a user to press a key before changing the gold. To
do this, we will create a thread in the Wesnoth process. This thread will run until the
game is exited.

118

First, we will change our DIIMain to only execute our code when our DLL is first loaded
into the process. This will ensure that we only create one thread in the game. We can
do this by checking the fdwReason parameter:

BOOL WINAPI D11Main(HINSTANCE hinstDLL, DWORD fdwReason, LPVOID
1pvReserved) {
if (fdwReason == DLL_PROCESS_ATTACH) {
// Code to execute when the process is loaded

}

return true;

¥

To create threads in a process, we can use the CreateThread API. Its definition is:

HANDLE CreateThread(
LPSECURITY_ATTRIBUTES 1pThreadAttributes,
SIZE_T dwStackSize,
LPTHREAD_START_ROUTINE 1pStartAddress,
__drv_aliasesMem LPVOID 1pParameter,
DWORD dwCreationFlags,
LPDWORD 1pThreadId

);

Since we are creating a thread within Wesnoth with no special attributes, we can ignore
most of these parameters. The only parameter we are concerned with is
IpStartAddress, which represents the function we want to execute when the thread is
started. Because this function does not need to return, we will create it as a void
function.

void injected_thread() {

}

BOOL WINAPI D11Main(HINSTANCE hinstDLL, DWORD fdwReason, LPVOID
1pvReserved) {
if (fdwReason == DLL_PROCESS_ATTACH) {
CreateThread(NULL, @, (LPTHREAD_START_ROUTINE)injected_thread, NULL, 0,
NULL);
}

return true;

119

https://docs.microsoft.com/en-us/windows/win32/api/processthreadsapi/nf-processthreadsapi-createthread

When loaded, this code will create a thread that will execute the injected_thread
function and then exit. To ensure that our thread remains active, we will use an infinite
while loop in our injected_thread function:

while (true) {

Sleep(l);
}

while loops will execute until their condition is false. Since true can never equal false,
this while loop will run until our thread is exited by the closure of the game. To prevent
our thread from causing slowdowns, we can use the Sleep API to pause its execution
for a millisecond.

3.3.9 Detecting Key Presses

To detect a keypress, we can use the GetAsyncKeyState API. This takes a single
parameter, which is the key to check for. If the key is down, it will return true.
Otherwise, it will return false. For this chapter, we will check for the user to press M:

while (true) {
if (GetAsyncKeyState('M')) {
// Change the player's gold
}

Sleep(1);
ks

One important caveat about GetAsyncKeyState is that it will constantly return true if
the key is held down. This will not affect us in this chapter, but if we want to toggle a
value off and on in the future, we will need to account for this behavior.

3.3.10 Pointers

In Chapter 3.1, we discussed pointers. Since our DLL is injected into Wesnoth, we can
access memory in the game through the use of pointers. This allows us to bypass

120

https://docs.microsoft.com/en-us/windows/win32/api/winuser/nf-winuser-getasynckeystate

ReadProcessMemory and WriteProcessMemory. However, we will still use the same
offsets and addresses that we used in the previous chapter.

First, we will get the player's base address by reading the value at @x@17EED18:

DWORD* player_base = (DWORD*)@x@17EED18;

This will declare player_base as a pointer to a DWORD value. The location it will point
at is our player's base address at @x@17EED18. We can then dereference this pointer to

"read" or retrieve this value. Using this, we can get our game base address by adding
an offset:

DWORD* game_base = (DWORD*)(*player_base + 0xA90);

Finally, we can dereference the game_base address and add an offset to retrieve our
gold value. We can then dereference this gold value and set its value directly:

DWORD* gold = (DWORD*)(*game_base + 4);
*gold = 999;

After building the DLL and re-enabling LoadApplnit_DLLs, we can inject this hack into
Wesnoth. Create a game and then hit the “M"” key. After you move your camera, the
gold value will be updated to our new value. The full code for comparison is available

in Appendix A.

¥ T lazers wror - L4

e,
o
-
T
.

™

121

3.4 Code Caves &
DLLs

3.4.1 Target

Our target in this chapter will be Wesnoth 1.14.9.

3.4.2 |ldentify

Our goal in this chapter is to create a code cave inside a DLL. The code cave will be
executed whenever we select Terrain Description. The code cave will give us 888 gold
before bringing up the terrain description box.

3.4.3 Understand

In Chapter 2.6, we created a code cave in the game's memory. We then adjusted the
opcodes in the Terrain Description feature to jmp to this code cave. We used xé64dbg's
built-in instruction assembler to create the code cave and adjust these opcodes.

To create this behavior inside a DLL, we will first need to create a code cave in our DLL.
We will then need to modify the opcodes in the Terrain Description feature to jump to
this code cave inside our DLL.

3.4.4 Assembly in C++

One feature of C++ is the ability to insert assembly code into a C++ source file. This
assembly will not be modified during the compiling steps. To do this, you use the
__asm keyword. For example, the following code can be used to execute the
instruction pushad in a C++ source file:

__asm {
pushad

122

You can also mix C++ and assembly in a function. For example, the following code will
save all registers, create a variable x, add 1 to it, and then restore all registers:

__asm {
pushad

}

int x = 0;

X =X+ 1;

__asm {
popad

ks

Finally, variables declared in C++ can be referenced in these assembly blocks. We will
use this behavior later when programming our hack.

3.4.5 Assembled Functions

To jump to our code cave from Wesnoth's code, we will need to know our code cave's
location. The easiest way to accomplish this in C++ is to declare our code cave as a
function. We can then use the & operator on it to retrieve its address, identical to other
variables. The pseudo code for this might look like:

void codecave() {
//our code cave

}

terrain_description_jump_location = &codecave;

However, when assembled, functions are normally created with stack frames. Stack
frames allow the compiler to easily offset and compute the location of local variables
and function arguments. We will discuss this behavior more in future chapters as we
explore the stack. For this chapter, we need to know that the codecave function above
will be assembled into:

codecave:
push ebp
mov ebp, esp

123

mov esp, ebp
pop ebp
ret

These extra instructions can cause our code cave to corrupt the game when we jump to
it. This corruption can then cause the game to crash. To avoid this behavior, we will use
the __declspec C++ keyword to modify how the function is assembled. When using
this keyword with the naked attribute, the compiler will not add a stack frame.

3.4.6 Cave Skeleton

Now, we can move on to creating our code cave. First, create a DLL in Visual Studio
identically to how we have done it in previous chapters. The name for this project will
be CodeCaveDLL.

After creating the DLL, we can add our code cave function. Like we discussed above,
the function will use the __declspec keyword to avoid the compiler adding a stack
frame. Its definition will look like:

__declspec(naked) void codecave() {

}

As we discussed in Chapter 2.6, the first step when creating a code cave is to save and
restore the registers and then restore the overwritten instructions. We identified these
instructions in Chapter 2.6.

pushad

popad

mov eax, dword ptr ds:[ecx]
lea esi, dword ptr ds:[esi]
jmp @xCCAF90Q

When this code cave was created in x64dbg, it looked like:

124

Fik Yiw Mxdmy Trec Meexw Focasaow Opoan =) FH?ixomn
S e I T3 9y AP FEadhEg AL @2
& = ¢ crspn lec 7 Iotes ® Zyeaoois o fomerv Mg | calstedk % es- [gz B epm
| vaisieo o Fuzhac
sl Liisiel (% Foosd ~ BN
o T mov eax,cnmcrd oI cs5:feck) AR
s|cC1 203 lea =237,0nmcd DT c5:l=3) §
s|C1 ES 77799E°F o wesncth. CCAFSD X
o| C132 Cooc add oyte pir cszileax),al
o| c134:¢ CO0C oid uyle plr usi[ean],al -
o] M1343¢ CONe bl iyl e e - ZEP
o]l 13426 oo Akl fy e e 0w L8
ol C1400 rOne vekd Biylae pie ¥-=3
o4 LN sl mTe ate o el
ol viisely LD odd »yTe ot
ol vii4iee LUV odd >yTe oTr o bt {2
o| vizgse LUV 2d3 TyTe oTr s
| c134 CO0C 2dd oyte oTr cs: -r1 4
| c134 COOC 2dd oyte ot s ZF 1
o| c13 CO0C add oyte pir c¢= aE A
e|C1 CO0C edd uyle pir v
el o O Akl Byl e e : L
el M3 COnNe Akl fiyle pie ae: e
ol N vekl Biyhas pie woaz e I 4
o]0 (R cdd moTe ate osiieey PR-IN
o]0 (R cdd moe ate osifeeyl
sl LUuY cdd ovyTe oTr csifoaw GE 2
ol Lis Louy ad3 ryxTe pIr csifee T
s| C1 CooC add oyte pir cs:ilee cE 2
s|C1 CO0C add oyte oI cs: L
o| CL CoocC add oyte oIr czile
o| c13 €000 o Uvle ulr usileend YIE fa
< 3 B
1:

In our DLL, we will create two separate blocks of assembly instructions. The first block
will save all of the registers. The second block will restore the registers and then
execute the original instructions we have overwritten. Between these two blocks, we
will place C++ code to modify our player's gold.

__asm {
pushad
ks

// code to modify gold

__asm {
popad

mov eax, dword ptr ds:[ecx]
lea esi,dword ptr ds:[esi]

jmp @xCCAF90Q
ks

If you attempt to compile this code, you will get an error on the jmp instruction:

125

Endre Sciutizn - @)' tiur A LN TTR R ':ij JNeviage *¢ | Build 1 Intdl Sense -

Cude Cewcnplion Prujec.

(8 improper op2rand yp: CoccCave

This is because the compiler cannot resolve the jmp instruction when a static address is
provided. There are many types of jmp instructions which differ based on the length of
the jump. Without this knowledge, the compiler does not know how to encode the
instruction. There are several ways to resolve this ambiguity, the easiest of which is to
create a variable. That is what we will do in this chapter.

Since our code cave has no stack frame, we cannot declare variables inside of it. To
bypass this, we will declare all of our variables globally, right below the include
statements. Since we need to hold a static address value, we will declare the address
as a DWORD:

#include <Windows.h>
DWORD ret_address = @xCCAF90;

__declspec(naked) void codecave() {
__asm {
pushad

ks
// code to modify gold

__asm {
popad
mov eax, dword ptr ds:[ecx]
lea esi,dword ptr ds:[esi]
jmp ret_address
ks
ks

126

3.4.7 Changing Gold

With our code cave function created, we can now use the same approach discussed in
Chapter 3.3 to modify the dynamic address of our gold through the use of several
pointers.

As we discussed in the previous section, we will place this code between the two
assembly blocks so that our code cave properly saves and restores all the game's
registers. The code to change our gold will be mostly identical to the previous chapter.
The only difference is that we will have to initially declare our variables globally outside
of our code cave function:

DWORD* player_base;
DWORD* game_base;
DWORD* gold;

__declspec(naked) void codecave() {
__asm {
pushad

}

player_base = (DWORD*)0x@17EED18;

game_base = (DWORD*)(*player_base + 0xA90);
gold = (DWORD*)(*game_base + 4);

*gold = 888;

__asm {

3.4.8 Redirection

Next, we can work on redirecting the game's code to call this function. To do this, we
will again use a pointer. However, this time we will declare the pointer to point to the
address of the game's code responsible for displaying the Terrain Description feature.
This will be the same hooking location we found in the previous code cave chapter at
Ox@QCCAF8A.

We need to take a slightly different approach to modify the game's code using a
pointer. Since we want to modify individual bytes, we will declare our pointer as an
unsigned char (short for character). Unlike a DWORD, an unsigned char represents 1

127

byte of data. Declaring our pointer like this will give us the flexibility to modify
individual bytes.

Before we can modify the game's code, we will need to change its protection type.
Code is only intended to be executed, so Windows will, by default, not allow other
processes or DLL's to write data to code addresses. To change this protection, we will
use the API VirtualProtect and reassign the protection type.

Finally, we need to understand how the jmp opcode is structured. We know that jmp's
start with the opcode value of @xE9. However, there are an additional 4 bytes after this
OxE9. These additional bytes direct the CPU where to jump to. These 4 bytes are not
simply the new address. We can see an example from our previous code cave that we
created with x64dbg:

Fk Yiw My Tres MaEew Focasaw Opoen =) FHh73XM
Sl U T 9y VAP EHedhg A LS
& = ¢ crepn ~Lec 1 Iobes ® Zreaooirs B qomerv Mop | Calstedk -, c== iy Zaps & ey
sl uii4ieiL w zhac
o| Liisse w ?6'9;:1 ~ BN
| vizaselu UL mov eaxX,Cmcrd T c5:eck) sayw
. ” e TEE TS .t Jal tro.L=1) -
0' - E9 T7799ESF o wesncth. CCAFSD vy
L CO0C add oyte pIr czileax),al n
ke - -~
B O Akl iyl e 1 ZEP
B COne Akl Gyl nie 1 JEF J
» One ekl iyl e " 252
» e o1 moTe atre h) wm
3 LOvL <dd oyTe oTr o al
3 LOLL cdd oyTe o al -
B LoV 2dd oyTe or al
B CO0C 243 nte ot al]
. CO0C 2dd nte ot al RLies
. COoc add oyte otr ,al AE A
. COoC <l uyle uor al
B One kil fiy e e -1 “FJ
B e ~rkl Gyl e -1
v One vekl Byl nie al I 4
1 R cd1 moTe ate 0] | =l
» (RS} o1 moTe atre b))
» LUy odd oyTe ot al G 2
. Lovy 243 oyTe oTr al (|
- CO0C 2dd ote ot al cs 2
“ COOC 2dd oyte otr al
. COoocC ad3 syte otr ,al
. CO0C e uvle ulr .l ne =efa
> -efeu
LERR]

There are several resources online that describe how this opcode is structured. The
basic formula is:

new_location - original_location + 5

Let's verify this formula with the code cave above:

OxCCAF90 - 0x1343614 + 5 = FF 98 79 77

128

https://docs.microsoft.com/en-us/windows/win32/api/memoryapi/nf-memoryapi-virtualprotect

This initially looks incorrect. However, bytes are stored in a "reverse" order on all
Windows-compatible CPU’s. This is a concept known as endianness, which we will
cover more in future chapters. If we reverse the byte order from the value we found
above, we find that it matches the opcode in x64dbg:

77 79 98 FF

Since we verified that the formula works, we can implement it into our own code to
jmp to our code cave.

3.4.9 Redirection Function

We will handle the redirection in our DIIMain function, when our DLL is first injected.
First, we will need to declare a pointer to our hook location. In addition, the
VirtualProtect API requires a parameter to hold the previous protection type. We will
declare that as well:

DWORD old_protect;
unsigned char* hook_location = (unsigned char*)0x00CCAF8A;

Next, we will change the protection type for our hook location. The VirtualProtect API
has similar parameters to the ReadProcessMemory and WriteProcessMemory API's.
Like we did in our previous code cave chapter, we will need to rewrite 6 bytes.

if (fdwReason == DLL_PROCESS_ATTACH) {
VirtualProtect((void*)hook_location, 6, PAGE_EXECUTE_READWRITE,
&old_protect);
//redirection

}

return true;

With the location now writable, we can begin the process of reassigning the bytes to
jump to our code cave. First, we will set the first byte to @xE9:

*hook_location = OxE9;

129

We will then write the additional opcodes needed for the jmp using the formula we
tested above. These opcodes will begin 1 byte after the hooking location:

*(hook_location + 1) = &codecave - (hook_location + 5);

However, this code will not work as intended. Instead of writing 4 bytes, this will only
write 1 byte. This is because hook_location is defined as a pointer to an unsigned
char, which is 1 byte long. To write the 4 bytes we need, we will cast hook_location as
a pointer to a DWORD. We will also cast the other variables to DWORD’s:

(DWORD)(hook_location + 1) = (DWORD)&codecave - ((DWORD)hook_location + 5);

Finally, just like we did in the previous chapter, we need to make the sixth byte a nop.
This can be done in an identical manner to the method we used to set the first byte to
a jmp. We add 5 (instead of 6) as values are indexed from 0 in C++:

*(hook_location + 5) = 0x90;

With this done, we can build and inject the DLL identically to how we did it in the
previous chapter. When in game, select Terrain Description on any tile. Before
displaying the description, your gold should be set to 888.

The full code is in Appendix A for comparison.

130

3.5 Printing Text

3.5.1 Target

Our target in this chapter will be Wesnoth 1.14.9.

3.5.2 ldentify

In this chapter, we will print our own text in Wesnoth. To accomplish this task, we will
first locate a section of code responsible for printing text. Then, we will use a code
cave to modify the game's memory to display our text.

3.5.3 Understand

There are multiple approaches to print our own text inside a game:

1. Use an external overlay.

2. Create a code cave inside the game's main display loop and call the function
responsible for displaying text.

3. Create a code cave inside a function responsible for displaying text and modify
the text about to be displayed.

Different games are suited best for different methods. For this chapter, we will use the
third approach as it is the easiest to do in Wesnoth. We will examine the other
approaches more in-depth in future chapters.

3.5.4 Locating Text

Our first task is to locate the game's code that is responsible for displaying text. To
start, we need to find a string of letters that appears in the game. For Wesnoth, we can
use the Terrain Description text that is displayed when clicking on a tile. Any
description will work, but for this chapter, we will use the description for the Ford tile.
For other games, chat messages are a good starting location.

First, select a map that has Ford tiles on it. Den of Onis is one example:

131

U 1% Bame me Wrsaom - L14Y

When the map loads, select a Ford tile and select the Terrain Description entry on the

context menu:

U The Satthe for Wesnath - 1,145

"RIACKE X W)

132

This will bring up the description for the tile, which contains a long string of text:

We can use Cheat Engine to search for where this text is stored within the game. Make
sure to close down the terrain description box before searching to reduce the amount

of results. Due to the unique nature of the text, we only need to search for a couple
words:

€ Chan lngims 70 D

Fie Ede Table DI Hep

[;J 4 H Q005 AR e
Poumed 13
AMdren Value Irevicss New Scan Nest Scm =t
et
""" Veboe
QAL el
o Zoan Type Sear:h for bt v | Codepage
et Ve Tppe UTF-¥

] Cate eniitone
| Ursar domrarys

] Erabl Speedha.

S ¢ : ¢ o B Y.
LR R R . - -
© O v W

Mewvery Vew < Aad Achirs Marust
an L} - AAdre e -
Advanced Upbont Taboe td

133

To narrow down which address represents the string we are interested in, change the
first letter of every string. After changing these values, go back into Wesnoth and
examine the terrain description again. The version of the string that is displayed in
game will match up with the correct address. In this case, the string starting with Lhen
was displayed, making our address @x10CE996B.

Arcrass valus Frevicas MNew Sean Mes Srar lnde Sran R
: : " Settr
LS Values
OIS1N3A3 EEE When a river happens to be exzremely shellcv,
0207 3967 .) :
D261327 Scan Type Szarza for tot | [J Codecpage
10557528 Value lype | Ou7F-16
[4 Case veruilive
Memory Szan Options)
Gl=a a ...) [Unranczmizzr
Ilran a ... [kv aLle Spesdhiac]
lran - Start CO0000CC000CCZ 000
Fon Sluw YU sEEE SRS E
ICCEATCN PeN A P... e -
Witahle wecutahle
1IFCETER PCn A ... - ~ 1A
CopryCiaWr=>
2CDD7CCC Mr2n a ... Alignee e
FastSran | ° c
Lasz Digits
Fauze the garre while scanrirz
Memary Views @ A4 Acereas Manually

Active Cascript on Accress Type aae

T R Srivivon e e gy vl v s e ey e

D Mo deszqatior 102091:z2 Zaing|&d’ Iheh a river happers to be exremely sk los
Ne desciotior 10CED512 Saing|+; Jrdr arver Fapcoaste oo otrermzy 579l ow
Mo deszasbtior L0 L Fidy “ming|&d hel a rrver happersto be excemrelys=2 icw

(-

MNa desraatiar 1TFYAE Sring|&4° Ih
Mo desinplion TID0SL0) syl Wi en = iwen bzppens Lo be edigimely shallow

LI N A T S bt. LA

3.5.5 Locating PrintText

We can now use the address we found to locate the function responsible for printing
text. We know that the print text function must access this text in some way to print it.
To determine where this function is, we can set a breakpoint on a byte of the text.

134

B wesretbexe - PUE TANC - Vocle: rd=lldl - Thread 1714 - v Jdbg

=t Atw 1Ry Irmem hions Ruaartes Dptens kap Fen AL
SESE SN AT IEE N FAE XV SN B
& cra Poah | iLw] Szles ® Sreaqunls M MemayMzp) CalSlek S5 SEFR 53
Hy—— e [f0r1271 C ret
Pl e s "“3
D =y » int
@ Znzry it
T » intd
l; 2Py nt3
= 12 ints
T -olow nMevory IYop Ll
T -downDasvr-he nt3
) int3
A ~ctlahr int3
‘*‘ int3
[T ints3
®. Famware, Aceoas
[Rt - " -
; n “inz Rakberenzes Cor+R
g . = Relr= %, Lavivre, | renite *, Dwod
B Smowiliexprsson r -
W, Merery, focese » | oesillensll
& wele DwoeD) _
[1 Merory, Zead » .r/bb(.ln B +10s¢
(R e = » oo [ZeRL R]
V| suw B 1 [<erTIVebugr 11T | Tres:
] - »
- ", Morery, Sxeouts e
= e » r Il: [V
Ac Iext 4
B T=ger ’
.text:7EFL | o=t L4
- [T A
PRERRTL B B azdess pe GWCups @ vz vl owas & !Jh%
Adr =2 v I] et
el g R 7220 6Ga 1Y 3n|bhdph a rivers acp 35 3EF
1 Tg gl Yo A ST A A LS L T - - - - ai: to he outre gt
INCEANARRIIR 7% 6 79|27 27 AR 61 6F G0 0F 77 00 20 27 7 |mely shallow. pe Z'EJ;F
INCFASSR| 73 73 69 6F |8 GE L8 65 77 70 A9 T4 2N RS TI| ssing aver 1t 1% IIEJ;F
INCFISAs| 20 7 TE|TF RS TA 69 61 AC PO AN &1 T4 74 AS| & Travial merte -4
INCFISER|77 7N 66 6F |77 70 AC &1 6F K4 70 A? &1 73 A3 A3|r =ar land arser ==
INCFASCR| 77 78 6F 69|74 73 PF 20 &0 A% 77 AS 6F 76 A3 77| Lmits. Mowrsouer 2'3 I:F
INCFISNE| 70 70 &1 &F |73 70 A3 T7 &5 14 785 T? &5 77 A?|, amy creatacs b g4
INCFISER| RS 73 T4 20|61 F4 A1 TN 72 RS A4 70 T4 6F 70 73| est adapted to = i
LOCEDSFRE |77 €9 €@ 60|63 EE ST 20 68 61 73 20 66 75 EC &€ wim'fng has f.11 ',’1.:}
INCFRANE] 37 AP 6F &2 163 FC RA TA T 27 RS TE 68 &F 27 A1l mahil Tty even T

With the breakpoint set, go back into Wesnoth and invoke the Terrain Description
action again. Your breakpoint will pop immediately:

135

LOoOE T e .d '1-0 ovlw wE BY

. =) nd! -
e ~ow uc e 55t ety u LA
. AR CAPEREPY oh oy e A !". i ‘ PN L
. R oerereY W B A S ,...

] - A S0 34 wissoth. SEAD
. WS LarLrerr O A OO g)N.tw “happmre v Lw o L e
- EETRAE ARy 3% Awerd por m-‘.-u.g-.:ﬂ T ey et la Por s
. 2 Tea 1! " ¢
. 237 0000008 T 0! deard ptr du: oc] LR L I LT Y vernceh. 001965 3
. = scrererr Vel (o ydwdrd 9O 2 e
. BOLL WAREREFE mow Sword otr siileto- . h' o CAASE OISO 4
. i o BT WA 25y s o #)
- bt dadad ad
. " -~ i
: 'JIH F&”” ': SPL L P
. BRAL sarErrrT — Lanslrras OVOVOART (EREE_ET WY _Eaonn
. ‘ O LASTSTATE COO0O0R4 (TTATUG 08 ECT_sank N
. L mow
. £+ o8 o I Al OB F3 CONN
. DAL CAFEREFE £4 0% Qs M
. DR e wOv difd 7 511 (ein <t com 55 con
ol T LEFRIE R mow ewora gRr 3::feco- Tag,ecx
nE o oTOecon CWN e moTh.
e 0 WA CFFREFT mow a0, deard ptr as:febp- 4]
oo) TEST &4 o ML YN Y
olliae SRBS 2 oanasas - S eerere

i « »

SLAETIONEMNG L wearoth, exe: SLEMIL oINS

WRlmps BNOeps WL

’t;u 0 mg“ FATAEN T9 wesnech ot Qsss Tion nsl[

.

Lo us JIUEITNE UL & FI/ET PapPen TO O EW

DIFEIMER 8% A har 8 rivar (sl) L barely Y
>

Cefad v

Examining this code, we appear to be in a loop responsible for moving each byte of
the text into a buffer. Like we did in previous chapters, we want to navigate to the code
that called this lower-level code by using execute until return and stepping out.

M wesnom e - P10 1ABC - Module: wesnotrece - Thisact Main Theead 'CAD - J32dbg - o >
Fie Wer Oeby Tice Mugns Fevoustes Optors Heb Feb 1 0N
LD s tawy tuBivess . 0O

Hou Qw 2l Uhchs ¥ Dresgorts WueoryMap () CStack M [Sept Rsmboe S S Aefweos W0
BT A CTE S R Tl Al woe sru

[T erTTEs

g
035 20 3IKo NOF eas

. an
o| DosERoFF 424 -wm-’-d ptr sa:fespe) oax {esp+8):"[" EAX 000000
. -vm”r s3:fesps24], ecx m :;‘.‘a‘:
. Y424 W OV Gword prr 55l BpALS et B 00838000
.0 4 04 mOov dword ptr aa: ¥l
- o Cdw Aeerd prr :-v |’~' ¢ LAR Nywraer
e mov dword ptr sa:fes ESP OoLNCO
. WOV &0, MwOrd pTr sid 19 €51 00000000
: Sword ofr 232 i EDI OLNCA24
i EIP COMDLE vesnoty. 006ID12E
e LA UuUUITUS
P IF s L O
~ oF e O OFO
. i 14 - AL (top~10]t¢t JS” ¢ PO 2
o] 0osisi M SO mov 1,80rd pTr s
| oosezise Viweed {ebp-190) ¢ | LASErrOf 00000003 (WILWM
ol oasaassa LAsiETAtw
o|ooseziso| ~
o| 0oz S5 | [ebp-390] 4 GS W28 FS 003
HE eand] €5 %028 DS 00!
— <5 W23 23 ois
F:
M (LT 4
.
-

T
Swird 9 [€90-08]+[017EA24) 01T ECAX
FRINTIMCSEDALL weOth, exa! SAIDALE #ALeS L

Worol Wowe2 Wowp) EWowe4 HWowes Bwen:

0 68 51 70 Bhen a river
T4 'Y 5 pens IO BDe eatre

o
- "{img) \aree\TrerrateSvane /fore v

s
0 39 T 81 Mely T liwm. o

136

This call looks like it could be responsible for populating the terrain description box
with text. If we continue execution, we notice that this code is called multiple times for
each section of the terrain description box. To determine the parameters passed to this
call, we can set a breakpoint on @x@@5ED114 and invoke the Terrain Description action

again:
» —— - - r— - ——— e - ———— — - ey — e —
. 3 NOr SAX, AN - -
. $94424 08 -y .,,.,-., ptr e 3§, can ~ || _Kide PPy
: :;‘cl;l"k;‘:(bi :- ;"'.’ - fAx OO0
2 W Oword DUy ‘B _eex ’
- 197424 10 mov dword per 1o l‘r. :‘: ':.:.”:.::
. BI7C24 04 SOV dword prs 1fe L ed ¢)
. RS TOFEFEFS mov edx ,dword per ~’ p 4 = “ & \mirihen a river hd
e 91424 o o-ova otr .sl(eso e panghe | €% OITECARC P -
. R0 GCFEFEFS "oV ¢ rd ptr [474 OITECo4 4" [img)\rarce\"terraiy
. $985 Tarererr oy)-- l -' ' is: QOO0
. QOSED129 €8 OXCEFFFF caMl -cxnoth 11% 1 0 0w OITECAZ4
. B8 J8FFEPRFS re JOwOrd per f-)
. 83C AC b -.v‘ i ED1LA weInoth, 0OSED LA
e JBES Garerery o %, w0rd ptr e |
. 74 08 je -ur-olh SEDL4T CFLAGS 4
. 190424 nov dword per i - T IF 1 PE L1 AF
. €8 CI28CA00 ANl wesmoth, nwox oOF 0 5P oF
. SR8 TOFEFRFF 2 203 dword per H = ' -
. SO0 COFLFEFF mov edi ,dword ptr ss:fe cFro w IF 1
- SRS TOFEFFES nore JOwora a’r : ‘ 3
. 1947 04 L) ;., d ptr ife SG L LAsStirres 00000002 (ERAOR_FILE NOT _FOun
- A4 13080000 ie M!M‘!h L1108 B l LAsSTStatus COOO0034 (STATUS OBIECT NAME N
- 8885 ToFLrErF nere JOword ptr tfe ’
. R8s 04 mov #di,dword per rax-4)
. sBrr test oV 0
. WA XCFEFFFF je -Olfoth ficoko
. 5850 ~cre LOwOrd prr (eax)
- !"':: ‘.:'-.-.- c-‘? ::a'd;"'rto:x;‘ ’e ST(0) FIFFO0O0000000000000 s87F0 IRty 4
. 4 04000000 POV fAx, v ’
*l < SaSSSSSSss — - > Detyt (ssaal) v § S L Unioce
3 1: [eaped] OLTECAZS
{eapl={Oi7EC2)4 47 [‘ng] \marce\"terrain/water /ford-tile.prg nl/imgl \n"J=i2108810 "(tmg]l\ny 3, t,;?:;, OO
ln! 4 LN A river Pagpens TC bDe extresely shallow 3: e:p-:' EFEFEFEF
4; lesprid] 00000000
EDIAA wesnaTh, exe: SIIDAIA #1ICEIA 5: lespetd) 00000000
’ 0 0" \nsree\ “terrain/water /forg-ti’
S0mp2 $SDmpl PSDpd S0mps B wahi ! Locas CAZ4 {1%a]
o
L s s L“E" ! I"] FEFEFEFS

The highlighted section shows that the text is loaded into the register edx. The code at
@x0@05ED11A then moves the value in edx into the location pointed at by esp. This is
identical to pushing the value of edx on the top of the stack. While we have not
discussed the stack yet, for the purpose of this chapter, we need to know that functions
will often retrieve values off of the stack for use in execution.

3.5.6 Memory and Endianness

You may have noticed that the address in edx does not match the address we found in
Cheat Engine. Since the text space is dynamically allocated, we will need to
understand how to retrieve the value of the text from edx to create our code cave.

Invoke the Terrain Description action again to force our breakpoint to pop. Once it
does, right-click on the value of edx and choose Follow in Dump:

137

o| Saript %] Symbols <2 Source - References W Yk
A || Hide FPU

017ED4EO

ECX 00000000
-1907 ¢ EDX QEFOE i
3]%2[%".(EBP 017e¢ B8 Modify value Enter
] 017EC

k'Y Follow in Dump

gy Follow in Dump »
EIP 00SEC @ Follow in Disassembler
S EFLAGS 0Of % Follow in Memory Map

21 Tm -r a nr a

This will change the current address displaying in the dump to the value of edx. As we
discussed in previous chapters, the dump section displays the current running memory
of a process. It's important to remember that both the dump section and Cheat Engine
are displaying and searching the same data.

Lnrr | ' bumod 2 4% Lump = g% ump4q L' Lumrp > @6 \watch 1 L= Locals

Address | Hex ASCII

cCrocol8| 8 93 €E 16[97 ¢1 00 00[97 0L €O 20(G7 GL 72 CO|ReZneeve u.. gor.
CEFOZS18|€C 75 72 G2 |6F 77 00 00|BC._ DO CD 10|2E OC 0D CO| Turboa..'DI.....
CEFOEZSE8|ZE 0D 00 DC |67 €F 72 00|6C 61 79 B5(72 OC 0D CO|....gor.layer...
CEFOzS68 (20 EQ FO DOE 102 OO 00 00|20 20 C0 23 (2¢ o2 -2 Ol géo N o VN
DRFD-SGR| R 00 00 0|20 o AR 00 10 9 ¢4 (40 o o o] e. .. i~ TIA
DFFD=SER| S0 101 00 00 |6 &3 hh 6D RS _GF /2 JI|0F 10 00 D&, . ACemenT.
CEFOZS38 (18 22 <B 0 (17 €0 00 00(17 00 C0 D0(6D €5 6 72| .SK.awwa.u.atmernil
CEFOZSAS|CO o2 74 DJC|O0E CO 00 00|BE EQ EB 10(30 OC 0D CO|.nt.cews Cre0...
CEFOZSB8|30 02 00 JC|7S5 €< 5F 61|6E 64 SF 66|6F 67 0D CO|O0...ud_and_foq..
CCroccCs|zZo Pl €D 1C|2A €O 00 00|2A 00 CO 20|61 74 0D ¢1| Ri.~...-...at.a
CEFOZSD8|€E 51 CF GE|6F €7 00 00|25 ER ER 10(/30 0C 02 C0|nc_fog..880.0...
CEFOESES)| 30 00 00 DC|71 5F 62 GF|GE 71 €9 cE |65 _€E 71 C0|0...E_contirent.

Command: [—

This value stored in edx is obviously not a text string. However, if we examine the value
of the bytes, we see that they share many similarities to the address we found in Cheat
Engine. In the previous chapter, we briefly discussed a concept known as endianness.
Most Windows-based CPU’s are little endian. By definition, this means that the least-
significant byte is stored in the smallest address.

In practice, this means that when the address 0x12345678 is stored in memory, it will
be stored as @x78 56 34 12. In this case, @x78 represents the least-significant byte, or
the smallest value. A good comparison is to imagine the number 123. Expressed in a

138

longer form, this value can be understood as 1*100 + 2*10 + 3*1. The smallest value in
this form is the number 3.

The second part of this definition can be understood by examining the dump. In the
dump, memory addresses grow from a lower value to a higher value. Because of this,
the least-significant byte will be stored "first" in memory. The combination of these
factors make addresses stored in memory appear to be "reversed".

Now that we understand endianness, we can conclude that the value stored at edx is
an address. We can quickly navigate to this address in the dump by selecting all the
bytes and selecting Follow in Dump again:

o B gdy Follow DWORD in Current Dump
BE——>e
ol B 'EZ’Si gy Follow DWORD in Dump »
®| 005
° - 74 SetLabel :
®| 005
o | oo Space
r----®| 0051 @ Breakpoint »
| e | 005|
i E ‘3“13’51 /o] Find Pattern... Ctrl+B
L--->@| 005
e o0 '{}’Si #fh Find References Ctrl4R
®| 005
® 'ff“f}’Si m Syncwith expression
r----@ || 005
e €9 watch DWORD
: ®| 005
i ¢ ’}}“{}’51 _4 Allocate Memory
4 @ | 005
o]0 & Goto »
| @ | 005]
I e| 0051
: | 0051 & Hex 4
| ®l < B
e € A: Text »
dword ptr [espl=[.
edx=0EF0E938 &" \ B Integer » 5
.text:005ED11A we (, Float »

@4 Dump 1 ¥4 pu Address
Address | Hex
OEF0OE938

S a o~

B B

Disassembly

After selecting this, we arrive at our string's location in memory:

139

- . o ———— o — - - W - S mw —— - - - —— w

OCCS9GE 20 CA CAT4C|G8 G5 GC 20(GL 22 72 GD|7G G5 72 2C . .Lhcn a river

OCES97E 68 €1 70 70|65 6E 73 20|74 67 2] 52|65 2C 55 7& happens to J¢ ex
OCES93E 7= 72 €5 €D|65 6C 79 20|I3 63 61 &C|5C &F 77 2C tremely shallon.
INCFS998 20 70 &1 73|73 69 6F &7 (27 &% TR A3 |Z2 20 _BS T4 passing over il
IKFY9AR 20 69 74 20|67 210 /3 /72|69 'h 64 AI|R 20 R AT 7S 4 Trivial ma
ULEYYBE /4 /4 &5 /2|20 bb bF J2|20 6 6L bz|bd4 2U bl bl TTEr for 1and ba
OCES9CE 72 €5 €4 J0(Z5 _€E €9 71|72 22 20 ID|SF 72 65 BF sed units. Moreo
OCES9DE 76 €5 72 2C(20 61 G6E 792D 62 72 55|51 74 75 72 ver, any creatur

OCCS9CE GE 20 €2 C5|73 74 20 GL|G4 GL 7D 74|G5 o4 2C 74 ¢ best adapted t
OCES9FE 6F 20 73 77|69 6D 6D 69|62 67 2D 53|61 73 2C 66 © swimming nas f

OCESADE 75 €C €C Z0|6D 6F 62 69|6C 63 74 73|20 65 7€ 65 L11 mokility eve
INCFRAIE GF 20 €1 74|20 73 758 R3I|RR 20 71 AC AT ARI AR 73 rial s’ pldares
1

~OoMmand:

To reference this value in assembly, we can make use of the ptr ds keyword:

mov eax, dword ptr ds:[edx]

This will load the value of the address stored in edx into eax. In this case, it would load
the value @x10CE9968 into eax. We could then use the ptr ds keyword again to access
the individual bytes of the text.

3.5.7 Changing Text

With this reversing done, we can start creating our hack. To verify that we have the
correct method, we will create a code cave that will change the text displayed each
time the Terrain Description action is invoked. To do this simply, we will increase the
value of the first byte each time our code cave is executed. This will change the value
of the character and allow us to confirm that our hack is working.

Since we know the call at @x@@5ED129 is responsible for printing the text and is also 5
bytes long, we will use it as our redirection point. As discussed in previous code cave
chapters, any location near the end of program's memory will work for our cave
location. In this case, we will create it at @x@1343E1B. As usual, we will replace the
hooking location with a jump to our code cave:

- VUDCU/ LAY CDIJO Jurgrrrr MUV TUA,UWNUI U pL So« BTV LIOUY

e ocosm11a £o1424 mov dword ptr s55:[[csp],cdx
00SED11D EB8D 6CFEFFFF mov ecx,dworc ptr ss:jfebp-194]
FEFFFF - J,eax

005ED123| ~vE9 EJECD500 jmp wesnoth. 13431

NNSFN12= ERRS 2RFFFFFF mov eax,dworc ptr -n&j
ST : C 1 e
NNEFM 1327 IRAS ARFFFFFF ermn 2ax .dwored ntr =<:Behn-1920

140

We will first save the registers in our code cave. Then we will use the ptr ds keyword to
load the value of the text from edx into eax. After that, we will use the inc operator to
increase the value of the first byte of the string. For example, if the first byte is currently
A (ASCII value 65), it will be increased to B (ASCII value 66). Finally, we will restore the
registers, recreate the call, and then jump back to the original code.

W Srarh 2 Lecg 1 Notes ® Brezkponts Memory Map) Call Stack
e | 01343E1B €0 pushad
[133310 EBUL mov eax,dword ptr ds:[edx]
e | 01343E1E FEOO inc byte ptr ds: [eax]
e| 0D1343E2 €1 popad
®| 01343E21 ES 0ASS82AFF call wesnoth.SE9630
| 01343E26 ~ E9 03932AFF jmp wesnoth.S5EC12E
®| 01343E2E co00 add byte ptr ds:[eax],al
- 2A42CHN COnn ardAd lhhwta nty AcesTaavdl 27

With this completed, go back into Wesnoth and invoke the Terrain Description action
multiple times. You will notice that a character after the image changes each time,
demonstrating that we have successfully modified the text displayed.

csnoth Help
‘it Ford

When a lver nappans to B2 extremely shallovs. passing over Tls 3 trhvial matter
for and based uairs. Maoreavars, any creanure best adaptad to sviimming has fu
mok !ty aven 2t such places In tha river. As far as gameag 2y Is concemad, a river
ford is tr= as ethar prassland or shalow vaater, Zancsing whizhever cae
affers the bast defeasive and movement Ban ases for the un't on It

vesnoth | lelp
ir| Ford

Whacen 2 rivar h2opan: to be extremaely shallav pazziag avar it 15 a rivial mattor
for land hased un s, Morsovsr any creatu e best 2dsotad to swmming has fi
moabilily even gL sach places in Lhe v, As Tar @s g4micg av is concernad, 4 nivel
ford is treated as =ther grassland or shallow viatzr, choczing whichaver one
allers Lhe best dfensive and movemenl Bonuses Tor the anil on il

141

Part 4
RTS Hacks

4.1 Stathack

4.1.1 Target

Our target in this chapter will be Wesnoth 1.14.9.

a.1.2 |dentify

In this chapter, we will create a statistic hack, more commonly known as a stathack. This
type of hack displays information to us about other players, such as their gold or
number of units.

In this chapter, our stathack will display the gold of the second player.

4.1.3 Understand

To create our stathack, we need to accomplish two steps:

1. Find the second player's gold.
2. Print this value to the screen.

In previous chapters, we covered the techniques to do both of these steps.

4.1.4 Second Player's Gold

Back in Chapter 1.2, we explored how games will often allocate similar data and
classes in arrays. These arrays can then be iterated over by the game to locate and
update data. While we do not know if this is how Wesnoth works, we can use it as a
model to try to locate the second player's gold value.

We know from Chapter 2.8 that the game dynamically allocates player classes based
on a base pointer. We also identified the game's and first player's base pointers. By

closely examining the code we located in that chapter, we can determine if the game
uses an array for its player classes and, if so, locate the second player's base pointer.

143

First, create a local game with two local players. Make sure both players receive income
each turn. Start the game and attach x64dbg. Play one turn for each player to make
sure any first-turn initialization code has executed. Next, set a breakpoint in x64dbg on
@x9B4CE3, the same call we identified before. In Wesnoth, end the first player's second
turn and the breakpoint should pop:

o8 i tawy tall v#fxe L RE
. o ' Loy totes ® Desipons N Memory Map L) CalSank - T soet 'ﬂw 7 Sorce Sedwrences W Treah)
5 - SN o casererr an .‘. T ——— l A Wide TPy
. s @ x,vord ptr ds:eax-ai] LR le ———
. TS mov @51, 0word prr ds:|eax 1 . . E“ 7RG A7sde 2 tern 2
- TAU S) TUN , Ton tUN:e - BTFINNes 47
. [} BOV #CX , #ix TS
- 50 A -y ¢ ,.).u-.j pIr dstleax) i it 8L
. WFAFDG syl edx,» ’ . » ATIR2 L4
. J1CA 803 e0x 2. (S RY s ATIEE "sde 2 _turn 2"
. NS0 ™ ad mo'd ptr dizfeax:a),edt 0
. 5585 orerrerr ~ery JOwOrd pir e) e A
. 0 9 v SAX. r tr da:eax]) e
. l:‘:s ;rur-vn ?‘e’. ein ,&3-3 Sn 151 [eax) eCn1d g o, 3590 4080
. IR0 OO0 2OV sax dvord ptr ds:eax ' PGS
. 190424 Oy Owdrd OUF (§.ean s .
- TS AN wanmarh C AN IO IF e PF . N (&
™ BED rerrer WOy Cx ,0v0rd DIF e) P . s OF » SF s DF ¢
. B ™4 sub esp, CF s TF IF 2
. §985 1srRrErT oy Owird pLr s J.van
- E8 BCowrrrr SN wwarvitn T fo (T TR 3 PACA_FILE _MOT_r
. 850 1 SO e0x ,0v0rd PIr a5 eansic] LastStatus ¢ 34 (STATY BIECT NN
. e N mOv ecx dword pir da:leax f (IS
. SEAS Asrurrer NV 251 ,0w0rd pir 'l‘ , GS M4 1S ook
. WAV Ul OO, PO scnze €5 %024 05 o028
. 106 S #5180 ¢ - -
. 1 1404 tes: el e e 2
. EPSS ARFRFFNY dwOrd pr . ity
. .‘1“1 - it weano! 4‘5 = v [OuinA (ndal el L 2 A
< > 11 [esp
2 t)p-O u fCice ‘ 1 5(L rn "

[RR——
weInoth, OMLT RO I: ﬂr—l 158 35520

4: [eapel] “‘8 -cmc ’« LH‘(E
$: [esprad) orreiscs
FTORTICOMACES wesnoth, enei B #Ben)

Norp!l PWowp? EWome) WOome4 W0owes Fwesh: Iilecks 3 ‘,"_"“"""‘"U m,c, 4°310¢ 2 turn 2°
Ay)3 wesAOTh, ORsR0
— = - . I_Sll - .,“' A “."‘:‘c:z wesnoth, 01552600
A 414 AR EIw lA..tl Acw - 4
2 73 MADOIC oo b Cadss Aiw. . ..0h.w e
*453030 ;g .Q T o2 (00 00 37 00|30 S A8 07 Aw Aw DIES4S0A Feturs 16 wisnots LS450A Trom 2
FTI33040 30 3 2 e e A Acw Acw Necs 91

The value in ebx indicates that this function is invoked for every player each turn.
Furthermore, we know that the value in ecx is the game's base pointer. From these two
facts, we can assume that the game has an array of player classes.

Our next step is to determine the size of each player in the array. The game must know
this size to advance to the next player in the array. Step into the call at @x9B4CE3 and
step through each line of code. From the previous chapter, we know that this code will
return the player's gold address in eax. For the majority of this function, the addresses
and values used are identical to the values we observed when looking for the first
player's gold address. However, near the bottom of the function is an imul (signed
multiply) instruction:

144

o = u

tawe T2 0 &

EHELA L RE

G99 e Y e ® frsncsier W taesgvan () el AT L A W vl) T o Rebwesnoee -
- ;NagoLr L0220 0« e wdk,wurd pLr Jet feus 4 =
- ‘JIS:: £00% N LLa,dwurd pLr Je: feus) - tide vy
¢ 0222C5 22CA a:b vix, Lk .
® ularsic 0 Do sm e CAX SEisdZal) N
* UINEBLE ilmt U1 T e, 2 e L Lo
o 1w D R e < MV PAY, S MR oo
C NIRRT - Ll LA L e m
emee@ NISNFRIZ - JF ¢ 1~ vnnarh.ltﬂ#tl Lar .
= & NIFRIE B2 2027000 o mex 330 F&s el
H - €~ T<20lCoL N LIk, wienalle, 2302076 A322CFG: "»r Lo LuaLug
H . Lo%4l= 2L Ny wurd pLr » 4'.: &l.;w. [« o 2CODICOs
' . £2242< 4 . ” e)
Po. LOJ4S uliieul 8200, nB3rOTA. 1522120 153:313:'9D == ccomzeT]
i e uusaese B3 SUUdsOU - mnrn,:uszg — = el Lol
=9 UINEE>2 W v Mo elX, IWor o8 K-cu -
® 11w KA FHRKT KT INE e eex) e 5- F are-t x) CT.acs oocooice
® 1IN Al Fohe e Tea pox ,“wrd prr d faac-11 " aE 1l
4 MRAFRIE SRR ANTANNTC e uv,-wu"l pre dn: | ace-A30] v 4= L
. CANT ASTANNTO e vixchaned pleoals: s A4 i "1
. 2222 a:b vix v
- CL72 04 aur a4 CODICODT LIPRIe
- CATD ITUTING il ek, wox, DGEOLTOT A<t {8 oA
M JUA o AP
I - J3 1A G5 FO?E T A3
_— LS R TR CT T e
¥ BETE T >0 01 »-d ovp,’u - ES LUZs DS Vit
' IR K . " aheiew' e <
' * NMINFREY gF Ay me s
[e NNaraen oimns oAl ex e v Tl Gl)
H < wep 4] D7CCOAD<
» ep 2] ST7CCOAD0
d CSp o) _wilLoans
eIp=iv] Arszzta
Y Sl Aveemie wi'edd
W 0022L57A wiunolli ea: S7A007TA 4740 A
weel RDwez PhDuics UhCagd Blaps W S

Yaldoo

[| S
.

When we step through this function as the first player, edx is set to the value of O.
However, when we step through with the second player, edx is set to the value of 1.
From this code, it appears that the game uses edx to offset the current player and then
multiplies edx by the value of @x270 to identify the current player. If we step down a

few more lines of code, we see that this value is then added to the value of eax to get
our current player's gold address:

|

s

cire o6

KO YN
e

£e3)| -~ M a8

8 81330020

B FR201802
GM424 8
EMAZe 08

gar € 0424 lozidew

£l 80804920

—
-

WOV Six, edx
L L
L TLIRT TR T TR

1Y SR, 00K, MF MY
NP eix el

ae _wigmoth,

‘-n td-.cd-.‘;."“
83d e1p, i

Pop eix ebn:A"sVde
oct fde 2

~ WD PP
o1ITEEeCs 4T318e 2 turn "
oo 00000002
e Q0D I O et
(4 4 o1rEE2 L0 o S
[$14 01 IE 0 “side 2 lurn 2"
el umARAy
r OldaLes” wENOTH, COMLST
CRAGS DODOVIE
IF0 PF1 NFO
oF0 SFO OF O
“wve LA i 3

Lastlrres QOOOOOO2 (ERAORSILE NOT_F
Laststatys COMDOIS (STATUS OBIECT NA

GS 0028 FS O04)
€5 0028 DS OoWe

$10u

OITEIGCS 47318 2 turn 2™

3: lespec! 03581600 wesnoth.oa882030
4 np-;oi O15:2ED0 wesnOth, 01552000
L 1Al Mo
STMMTIOONMESET wesnaTr, exe: SLARSST sty e -
NS return .
Wome: PWhep2 WS0ap) S04 WOomps B weh x--«m 2P .
IP s 1735 | CATRRACE |4-5100_2_tTern_3
2 - . [21C C1S52(D) wesroth,OL152ED0
e e [aa¥asTanian ot LT AT I £220 | CASSIUD) | waSOTN, G415 2600
. . . [4 4 rd
OIARIIN |35 5 LS TA |10 50 OF 90|00 50 ©F 90| 00 00 20 asjeagas £334 ﬂ.‘”m

145

From this code, we can identify how to offset our second player's gold value. Like we
have found previously, we will use [[0x017EED18] + @xA90] to offset the game's
base pointer. If we add 4, we will get the first player's gold address. To get the second
player's gold address, we can instead add @x270 + 4, or @x274. We can verify this
calculation using Cheat Engine:

| %

Filr Fe~ T-ale RN k-

@ - "H 00000854 weznoth. e a

~ounek D
Tldiese Value Zr... First Szan Nex: Scar Laco Scar
Sedngs

‘ Vil
1 - _l

o byl =eo !t Malos - : wr hoernala

Vo aTurs 4 Mhtas v ot

5 Aud audreas X
= —
— Jrandurnces

i Acdress .

- = -
-5 Cnable Soeechack

bf0co

Jdeseripticn

l\ > descr aticn

Iyne il ol

4 Dyta: s
Puole:

G2 | Uy ABLNE-20 = 05T A3
< |0l 5 | [07CC9020+490] -5 05 &
Js17EED7 S 2 N7CF0A0
I e ey View * ddOkisan r M_ Ade Addres: Manaally
Actes Deszdptior A UK Canee

In previous chapters, we have already written code to offset the first player's gold
address. We can modify this code with the new value of @x274 to retrieve the second
player's gold address like so:

player_base = (DWORD*)@0x@17EED18;
game_base = (DWORD*)(*player_base + 0xA90);
gold = (DWORD*)(*game_base + 0x274);

146

4.1.5 Printing Value

In the previous chapter, we covered a method to print text. We determined that by
creating a code cave, we could access the text for the Terrain Description method by
referencing the value pointed at by edx. Once we accessed it, we could store bytes in
this location to be displayed by the game.

Using the method from Chapter 3.4, we can implement this functionality in a DLL.
Since we already discussed the method to redirect code, we will examine only the code
cave function now. We will start with the skeleton:

DWORD ori_call_address = @0x5E9630;
DWORD ret_address = Ox5ED12E;

__declspec(naked) void codecave() {
__asm {
pushad
}

// new code

_asm {
popad
call ori_call_address
jmp ret_address
ks
ks

We have seen this code before. The major difference is that the instruction we are
replacing for the text printing is a call.

This code cave will be called each time the Terrain Description method is invoked. In it,
we want to retrieve the second player's gold value. We can do this using the code we
discussed in the previous section:

__asm {
pushad

}

player_base = (DWORD*)0x@17EED18;
game_base = (DWORD*)(*player_base + 0xA90);
gold = (DWORD*)(*game_base + 0x274);

147

We now have the second player's gold value stored in the gold variable. To display this
value in the game, we need to convert it to a string of characters. To understand what
we are trying to accomplish, here is the memory dump containing the text string we
found in the previous chapter:

- . W - oo - B e ol e i S mw mmm——— - - . ——— w

OCCS9GE 20 CA CAT4C|G8 G5 GC 20|GL 22 72 GI|7G G5 72 2C . .Lhcn a river

OCES9TE 68 €1 70 70|65 6E 73 20|74 67 20 52|65 2C 65 7& happens to J¢ ex
OCES93E 7= 72 €5 €D|65 6C 79 20|I3 63 61 oC |50 6F 77 20 tremely shallom.
INCFE998 20 70 &1 73|73 69 &F AT |27 &7 TR A3 |Z2 20 KBS 74 passing over il
IKFYYAR 21 &Y /24 20|67 2 /3 /72|69 'h 64 hRI(R 20 RD AT 7S a4 Trivial ma
CEYYBE /4 /4 €5 /2|20 6b 6F J2|20 6L 6L bz |64 20 bi bl TTEr for Tand ba

OCES9CE 73 €5 €4 20|75 GE €9 71|72 22 20 1D|6F 72 55 &F ced umts. Moreo
OCES9DE 76 €5 72 2C|20 6L 6E -9|2D 62 72 53|61 74 75 72 ver, any creatur

OCCZ9CE G 20 €2 €573 74 20 GL|G4 CL 7D 734|C5 04 2C 74 ¢ best adapted t
OCES9FE 6F 20 73 77|69 6D 6D 69|6Z 67 2] 58|61 73 2C 66 c_swimming nas f
OCESAOE 75 €C €C Z0|6D 6F 62 62|6C 63 74 73|20 65 7€ 65 L11 mobility eve
INCFOAIE GF 20 €1 74|70 73 78 63|68 27 T1 AC|ART A3 AR 73 ri al seet't places
~ommand: |

Looking at this, we see that even though the game displays Lhen, the values stored in
memory are @x4C 68 65 6E. This is due to the game using ASCIl encoding to encode
character values as certain numbers. The game then knows to decode these values and
display the corresponding character in game.

Therefore, if our gold value to display is 225, we cannot simply write 225 into the game
and expect the game to display it successfully. Instead, we need to convertitto 2 2 5,
or @x32 32 35. There are several ways to do this, the easiest being through the use of

the sprintf_s API:

#include <stdio.h>

char gold_byte_array[4] = { 0 };

gold = (DWORD*)(*game_base + 0x274);

sprintf_s(gold_byte_array, 4, "%d", *gold);

This will convert the value pointed at by the gold variable into its string representation
and store that value in gold_byte_array.

Finally, we will move this converted value into the memory that will be displayed. Since
sprintf_s alters several registers, we will first restore them and save them again to
ensure that the game does not crash:

148

https://docs.microsoft.com/en-us/cpp/c-runtime-library/reference/sprintf-s-sprintf-s-l-swprintf-s-swprintf-s-l?view=vs-2019

__asm {
popad
pushad
mov eax, dword ptr ds:[edx]

In the previous chapter, we simply incremented the first character pointed to by eax. To
display our gold value, we will move the values stored in the gold_byte_array:

mov bl, gold_byte_array[@]
mov byte ptr ds:[eax], bl

First, we move the first byte of the gold_byte_array into bl. To understand why we are
using bl, we need to understand the different sizes of data used by the CPU. A bit is
the smallest unit of data, representing either O or 1. A byte is 8 bits. A word is 16 bits. A
double word (or DWORD) is 32 bits. When looking at the memory dump in x64dbg, we
are looking at byte values. 4 of these byte values combined together form a DWORD.

Currently, all the registers we have seen, like ebx, are DWORD's. Early Intel CPU’s, like
the 8088, used 16-bit or WORD registers, like bx. To access each byte in the bx
register, you would use h and |, such as bh and bl. On modern CPU’s, even though we
are using extended (or DWORD) forms of these registers, these same rules apply. Since
we are moving individual bytes, we need to move them into a value that can hold a
byte. We then move this value into the location pointed at by eax, which is also a byte
long.

This code will move our first character into the text. We can repeat it several times to
move additional characters. For this chapter, we will only display 3 characters’ worth of
data:

mov bl, gold_byte_array[1]
mov byte ptr ds:[eax + 1], bl
mov bl, gold_byte_array[2]
mov byte ptr ds:[eax + 2], bl

Finally, identically to Chapter 3.4, we will redirect the game's print text function to our
code cave in DlIMain:

DWORD old_protect;
unsigned char* hook_location = (unsigned char*)@x5ED129;

149

if (fdwReason == DLL_PROCESS_ATTACH) {

VirtualProtect((void*)hook_location, 5, PAGE_EXECUTE_READWRITE,
&old_protect);

*hook_location = OxE9;

(DWORD)(hook_location + 1) = (DWORD)&codecave - ((DWORD)hook_location +
5);
ks

Build and inject this the same exact way we did it in previous chapters. Finally, go
inside a game and open up the Terrain Description on a tile. We should see the second
player's gold value printed several times due to how we hooked the function:

The full code for this chapter is available in Appendix A.

150

4.2 Map Hack

4.2.1 Target

Our target in this chapter will be Wesnoth 1.14.9.

4.2.2 |dentify

Our goal in this chapter is to create a map hack, a type of hack that displays the entire
map to the player and removes elements like fog-of-war.

4.2.3 Understand

In strategy games like Wesnoth, tiles on the map can either be visible or hidden by
fog-of-war:

We know that the game must store whether the tiles are visible or not somewhere in
memory. These locations are most likely in one large block of memory. One way a
game might choose to represent the map is through the use of an array. In this array,
each element would represent one map tile's visibility status:

int map[map_size] = {0, 0, 1, 0, 0, 1, 1, 1, 0, ..}

151

The game could then iterate over each tile in the array to determine whether fog
should be drawn over the tile.

We also know that the game must calculate the values for each tile every time the
player moves a unit. If the player moves a unit in range of a tile, the game needs to set
the tile's visibility to true. If the player moves a unit out of range of a tile, the game
needs to set the tile's visibility to false. To make this calculation easier, games will often
first set all tiles to an invisible state:

for(tile in map) {
map[tile] = @
3

Then the game can go through each unit that the player controls and set all the
surrounding tiles to visible.

While every game will have its own way of handling map data, they all must follow a
similar set of steps to calculate visible tiles. We can use the following approach to
create a map hack for any strategy game:

Search for an unknown value.

Move a unit to reveal part of the map.

Filter for changed values.

Move a unit to hide the revealed part.

Filter for changed values.

Repeat this process until you have a reasonable amount of results (~50).

Look for patterns in the results and edit each one until you figure out which ones
represent tile data.

~N N R W=

Once you have found the tile data, a breakpoint can be set on one of the tiles. Then, a
unit can be moved and the breakpoint will pop in the function responsible for writing
values to the map data.

4.2.4 Locating Map Data

Locating the map data is the most time-consuming part of creating a map hack. First,
create a local game in Wesnoth with a single player-controlled opponent. Since we do
not know what values we are searching for, start a new scan for an Unknown value type.

152

After the scan completes, select a unit and move it to a new location to reveal
additional tiles. Make sure you remember this location to use on all future requests.

After moving the unit, change the scan type to Changed value and filter the results.
When the filtering has completed, move the unit back to the start location and end
your turn to hide the terrain again. Quickly end the next player's turn and then scan
again for Changed value when you regain control of the first player. Continue this
process until you filter the results down to a manageable amount.

To quickly reduce the amount of results, you can also change the scan types to
eliminate values that may change constantly but not in a manner related to the map
tiles. For example, if you recruit a unit that does not reveal additional squares and then
search for Unchanged value, many results will be filtered out. This approach can be
used with different conditions (for example, pausing and resuming the game and
searching for unchanged values) to quickly reduce the search size.

Eventually, you will get your set of results down to a reasonable level that will allow you
to observe game behavior manually. In this chapter, we have managed to narrow down
the result set to 10 possible addresses. Due to DMA, these addresses will be different
each time we start a new game:

€ Crum ErgmeT. - 0

i Telde DO iy

L
‘[p Y H 0000 LAd-wetroth me

o 1

Men Conn Plot Lomm Unde Conn
Setargt

< Trye Changed vioe

T ICompaseto Tt scin
] Jrvandormpey

Jimake Cpondiiab

Marmow Vien (%) A3d acdress Marasady

Aceve boacrpoicoe

Mo dacrenen

Mo dacrgon
MO dacrgon

A Asvr rgm van

Mo dacrgaon

Mo dacrgen

PO S ran

153

Initially, these values do not appear correct, as the values seem almost random. To
determine if we have the correct addresses, check the box next to each address in the
Active column. Checking this box will disable modifications to the addresses' values.
With the addresses inactivated, move your unit away from the tiles you have been
testing on. You should notice that the tiles no longer display fog-of-war when moving
away. This test confirms that we have found the correct addresses.

4.2.5 Locating Map Code

Now we need to determine how the game handles map tile data. When reversing an
unknown game, we start by making educated guesses. In this case, we guessed that
the game stored individual tiles with a simple visible/invisible scheme to determine
visibility. We used this model to help track down the data we are interested in, but we
now realize that this model is incomplete. Before we can continue, we have to update
our model to reflect our findings.

Observing Cheat Engine, move a unit to reveal and hide tiles. You should notice that
the values we found change consistently when doing this. When a tile is hidden, it

appears to be several large values. However, when a tile is visible, it appears to always
be set to 4294967295:

New Scan Next Scan

S Type Changed value
Vehe Type 4 Bres
] Compare tc first scan
"

Y
Me~oryyV cm Q)

Actve Descrgtion Addvess Tvpe Valoe
[Mo esingron W15 dBtes ABHWD
Plo ferinpron 10O 4 Dyt MO
] Neo gesingron 15065050 4 Bytes 425034705
] Mo zesirgron 15065040 dBgtes A2
Mo 1WoeeLen 4000 2000404
190C 1250 4 Bytes A58 0
4 Bytes <

" “erregorm W ran J|l‘¢.' 4204008
N Sesironon 190CT1M0 40vtes 4054440

154

This is a distinct value, so let's try setting another address we identified to this value.
When this is done, a whole column of tiles should appear visible:

X

et ot Wenoer - 1748
= - Jre

By scrolling up the map, you can see that the whole column from the top of the map

down is controlled by this one value:
D »

o Bovvig lor Whpmom . ' 1.0

M N

Clathathas

155

With this information, we can now alter our model. Instead of an array of tiles, Wesnoth
appears to use an array of tile columns. These columns are then set to a value between
0 and 4294967295, depending on the number of tiles in the column that are visible:

int map[column_size] = {0, @, 4294967295, ..}

The value of 4294967295 converted into hexadecimal is @xFFFFFFFF.

Now we can begin tracking down the code responsible for setting these values. Attach
x64dbg and set a breakpoint on write on one of the map column addresses. Move your
unit to reveal that tile, and the breakpoint should pop:

R s b ST T TR W 1T LT | LA e Bt $saesde Fraea SOl
B 0373 ir TR = 1
Té T ¢owitenl b AOR%STA
. 2W=3 A A AR L r--::n-;
- /4 .4 Ch wArEeTh . N - ERY IRGAZEFEN
. L POV eia,abp AQK 00D0ICCO
b vz shl e, RS LSRR
. e not Cix :F el |
- 220 und .w.ul uL s fesi), o 4, o1TIICL
® 9370 ar .y L 5l 13J:-EFU
. ~ 7T " wie ln Iv.rt'l"?r :n= P
Rl AavYn r= bl -
K Ealat) LU T LA P >
K RO =n vnf'w!h. £ONENR - st
K OO0 AN eav weed pes oo [add] - ~~
= B U1 3dd eiv,- r J ShALLLbsue
. S3t23 Ua J4 sud verd ;33 lesa- b == & e
a A o3 AL %0 veIroTh. o 3 co 4o ar n
- CC:C7CT 0202 suv word pir ocu:fedil, o P
- 93CT 2 wd Lo,2
a ANVET4 = W7 st el ple e fean 4,7 IFrrar cOomnT”
. * TR FF 2 vl ho BCNAFT -_;-,,a: 153 LLOULDY
< CRNT 0 vav Mte pTe ocel | ady |,
B M e s Tan p=< dnar= prr o de: [u Nee] Ly = R
. ==1e21 U7 dec owerd L zz;fezo-1] LL WU UL LO2U
a « =28 JJPrPES- SED vesroTh.Uses <
L] A noo
- GC: 20 nuy - P
- 93¢ co wuy Lap,d v tmRkGWE)
Y 4z | wuprs] 23327C2
2z i) 11MeTn

ecx-v 2z et | ADTOO0]
eeredn] T35ER2
[Mpﬁ ﬂ} -k

.
oo

P aA Lz I00E0I2L wrarnlho o S2CDITI W2CCO22

Helanl gdrurp e Primnd L s B ot [sw aoar - ‘l' -

oL
ATCCO2D PIL32FC2A] “clurn w0 wim

ToIalc

. rrracs | 1veenTis
igdrens Jlex - - |2 J B EEETE] B
1SUEFzSs o L 28 L0 U 00 oy iy 35 U0 LY us g < mrrnoe | 1206ma0 4

SUBFELL 'J S 1S L0 uu B osIFE e i 38|00 va us R B T e

PLELT N OR (A L 18 LU LU LE LIfIL S in S (00 UE v ceuss | 1sE01esy
> 20O 0D 57 00 20 O|rs & 23 32|00 pE 03 Teevss | o3 :w;,.
> o o te 02 23 o|rs < 23 3%(23 03 03 3 o bt ¢
. e i == |- : SRR PR EX

' 40 20l O M O TOING & Y 1T AF N A 217cc0<0 |oorered2] ~stern o wimt

v 30 S5 19 91 02 9 0|54 AT M X0 RE M n1vrras zl33enareal - -

Looking at the registers, we can identify that esi holds our map column data. Scrolling
up, we immediately see the code responsible for setting this column's value:

[— [—
mov eax,ebp mov eax,ebp

shl eax,cl shl eax,cl

not eax not eax

and dword ptr ds:[esi],eax and dword ptr ds:[esi],eax
cmp ecx,l1F cmp ecx,l1F

156

If we examine this code, we can see that a value is loaded into the register eax,
modified, and then used to set our column's value.

4.2.6 Changing Map Code

Since we always want the column to appear visible, we can modify this code to set the
column's value to @xFFFFFFFF. We will do this through the use of an or operation. An

or operation takes two sets of bits and creates a new set in which the value of each bit
is O if both source sets are 0, and 1 if either source set is 1. Since OxFFFFFFFF translates
to all 1's, or'ing a value with this value will always produce @xFFFFFFFF. We will

conduct this operation on our tile column and nop out the other instructions:

830C rr
90
90
83F9 1F

J Y e TR R e B

OO

or dword ptr ds:[

cmp ecx,1F

We could also use a mov instruction here to accomplish the same goal. However, one
drawback to the mov operation is its size, or the amount of opcodes we would require.
We simply do not have enough room and would require a code cave. To avoid this
extra complexity, we use the or instruction instead since it is shorter.

With this modification made, go back into Wesnoth and observe that the entire map is

now visible:

157

U TaeRaile T Weanntn - 148 — I *

P

Arorymnous player 1¢ -,
Dak Sureai= vl é
Lol L, o4

We can use a similar approach covered in Chapter 3.4 to create a DLL to accomplish
this behavior. First, note down and copy the opcodes generated by x64dbg when
making our alteration. We will place these values into an array so we can iterate over
them:

unsigned char new_bytes[8] = { 0x90, 0x90, 0x90, 0x83, OxQE, OxFF, 0x90, 0x90
5

Next, just like we did in other chapters, we will unprotect the memory at the hooking
location. Then, we will iterate through each opcode in our new_bytes variable and
write it into the game's memory:

unsigned char* hook_location = (unsigned char*)0x6CD519;

if (fdwReason == DLL_PROCESS_ATTACH) {

158

VirtualProtect((void*)hook_location, 8, PAGE_EXECUTE_READWRITE,
&old_protect);
for (int i = 0; i < sizeof(new_bytes); i++) {
*(hook_location + i) = new_bytes[i];
}
ks

This DLL can then be injected like we did in all the previous chapters. When injected,
our map hack will reveal the tiles for every map in the game.

The full code for this chapter is available in Appendix A.

159

4.3 Macro Bot

4.3.1 Target

In this chapter, we will switch our target to the game Wyrmsun, version 5.0.1. This is
because Wesnoth, our target so far, does not support gameplay mechanisms (such as
real-time control of building units) that would allow us to write a macro bot. Wyrmsun is
free and similar to other traditional RTS games, such as StarCraft, WarCraft, or
Command & Conquer.

4.3.2 |dentify

A macro bot is a type of hack that will monitor our resources and automatically build
worker units. In this chapter, we will create a macro bot that will automatically build a
worker out of the currently selected structure when our money is over 3000.

4.3.3 Understand

To write a macro bot, we need to understand how RTS games handle unit creation.
Typically, RTS games have a list of units associated with each player. When creating a
unit, the game performs several operations and then adds the new unit to that list. The
code may look something like:

recruit_unitCunit_type) {
memory = initialize_memory(sizeof(unit))
unit = create_unit(unit_type, memory)
player->decrease_money()
player->add_unit(unit)
player->increase_population_counter()

To create units, we need to find this function and call it ourselves. To locate this
function, we can use two different approaches, depending on how the game handles
unit creation.

160

https://store.steampowered.com/app/370070/Wyrmsun

e If we create a unit and the game instantly decreases our money, we will locate
our money and then set a breakpoint on write on our money value.

e If we create a unit and the game instantly increases our population, we will
locate our population and then set a breakpoint on write on our current
population.

When these breakpoints trigger, we will be inside of the hypothetical decrease_money
or increase_population_counter functions in our example code above. We will
therefore need to go up several functions. We will do this by executing the function
until it returns and then stepping out.

Wyrmsun (our target in this chapter) loads code dynamically. As a result, the addresses
you see in this chapter will be different when following along. However, the instructions
and methods described will not change. We will discuss how to deal with this behavior
when we create our DLL.

4.3.4 Locating the Create Unit Function

In Wyrmsun, money is decreased instantly when recruiting a unit, so we will use the first
approach mentioned in the previous section. To find our money address for this new
target, we can use the method discussed in Chapter 1.5.

Next, attach x64dbg to the game. Make sure that no operations are taking place that
will alter your money, and set a hardware breakpoint on write on the money address.
Recruit a worker and the breakpoint should instantly pop. Using execute until return/
step over, go up several levels of code until you see the following string:

From this string, we can see that we are in the right place, as this logic is clearly related
to recruiting and placing units.

161

From here, navigate up one more level to the parent calling function:

Ty
iaimTe

N
. O

~
'

U400

51
RRCF
EY JEFEDUFF

CZ2 040N

51

SELE

FR I3NAOFFF
50

5k

SF

rm
2

L2 u4lu
51

80CC

B /95(DEFF
58

5F

0400

If we examine this code, we can see it is a series of very similar calls that take a single
parameter. If we set a breakpoint on the call to @xF42CF7, we can see that it is called
only when a unit is recruited. Next, place a breakpoint on the call above the call to
OxF42CF7. With that set, do various actions in the game, such as moving units,
attacking, and building. When conducting a build action, your breakpoint at the call
above the unit recruitment function should pop:

CE

gD

C2 0420

51

8BCE

ES 10B4DEFF
5B

SF

g

gD

C2 0400

51

8BCE

ES8 TEFS8DOFF
5B

SF

SE

50

C2 0400

g1

162

Given this behavior, we can guess that all these calls are related to functions in the unit
card (the bottom-right of the screen). We can imagine the code may look something
like:

switch(menu_event) {

case BUILD:
build_structure(event_data);
break;

case RECRUIT:
recruit_unit(event_data);
break;

case MOVE:
move_unit(event_data);
break;

Therefore, we can assume the call to @xF42CF7 (in our example) is responsible for
recruiting units. We can verify this by nop’ing out the following instructions:

push ecx
mov ecx, esi
call @OxF42CF7

When nop’d out, clicking the recruit button on a structure no longer creates a unit.

4.3.5 Reversing Event Data Structure

Now that we have located the unit creation function, we need to reverse the data
provided to it so that we can call it ourselves. We can see that there are two pieces of
data potentially being passed to the function:

e Avalue in ecx, which is pushed on the stack
e Avalue in esi, which is moved into ecx

Let's determine if both of these are necessary. First, replace the push ecx instruction
with another register, such as push eax. If you try to recruit a unit in the game, you will
notice the game will instantly crash, indicating that the push is important. Next, restart
the game and nop out the mov ecx, esi instruction. You will notice that the game
responds normally, indicating that this operation is not used by the unit creation event.
As a result, we only need to reverse the value of ecx when pushed.

163

Set a breakpoint on the push ecx and recruit a worker. When the breakpoint pops,
right-click on the value of ecx and choose Follow in dump:

M® Dump2 MW Dunp: MM Dunp 4 W Dump 5

20 0D 88 3709 02 AS
00 02 020 02 g 8D D 1L

This data does not appear to contain all of the information we would expect. The
similar values of the data (the first three entries repeat @xb710 at their end) indicate
that this may be a pointer in a table of pointers. To validate this assumption, select the
4 bytes (0xf@1db710) and choose Follow in dump. Your dump view should change to
0x10b71df0, like so:

0l { 4l i - ’N (M) o
00 Q G A Q 00 20 CO 0D 0 00 o
: OC 00 00 0D 20 29 0O C 00 D20 CO
00 DD CO 00/00 00 0D 00 D0 CO 0D/ 714 00 co
) EY D) M) END M) M) N Nl /73 1 M) N} o)
20 00 00/00 00 00 QO3 72 O 72 20 0
00 "j 00 ‘ﬁ Q0 0) D 00 20 CO
00 00 0D OC |00 D0 0 O ocC 00 D20 CO
00 2F 00 S8E 0OC 0) “ﬂ o0 72 00
00 UF 00 0D UL 3 : 5 T W
00 00 7 QCI2ZF 20 €0 0O 00 72 CO0
0000 00 O QC IO 20 €O 0O oc 00 20 CO
3 D 00 00O 00 2 00 70 DO EE O &7 00 2 o0
[3 Ll A UL ENT 0 1K) [N] N1) eE = 4
Q0 FEE_FF _FF QC =) 0C
o0 00 0Q ~ QC
00/00 00 O 0C | OF CO 0D/0C 00 D0 CO vyy
70 75|70 EF EE | 6 0 00 |EE_EE_FE_CO popup_umit..yyy
20 00 00 /0OF 00 0D 00 |00 OC /7 0D|2E 00 67 CO .
00 C0 0026 80 £ 00 20 DD OF 00 D CO0
B2 4G AZ2/00 4A 0D 8& 2C 40 X G
08 25 £ 03/00 00 0D OO0 |00 D0 OO 0D 0C) O
. ¥) 0 M) = N Ed BJ LG N i
{
|
4

i
0 00/00 00 00 00|00 00 QO
{
|

F

3
[

nuMm

00 00 0D 00|05 D0 CO
0) 00 00 Q0 00 20 0

Immediately the text worker should jump out at you. It appears that this structure
contains data on the unit to be created. Back in game, create another structure to
create units (such as a War Hall, or barracks-type building) and create an infantry unit.
When the breakpoint pops, examine the section of memory at @x10b71df@ again:

164

SC AE 4B D1 €8 OA E¢ 0O oC C | 0 25 CO 00
20 00 00 D00 50 EC ii Q3 0C 00 00 OC OF CO 00

!)) 00 00 J0 00 M) - M oU o0 0o
20 00 00 DO|00 00 D0 OO/0C OO0 00 OO |74 CO BS
5400 00 D000 00 DO OC 00 72 00 0D 0O 00O
2C 00 00 DO 00 00 D0 00|65 6E 66 61 6E 7 T2
MDD 6D 00 (/3 00U /5 U0 0E DD U0 0L | DF oo
020 00 00 D000 00 D20 0OO/0C OO OO0 0C 00 00
20 7D C2 2F 00 BE 0O QE 00 —ﬁ 0OcC
02 00 00 DO AF 00 D0 Q0 LC c 53 0L
B8 €0 -3 0§ /00 00 73 2F 00 &€ 0O

ﬁi o0 ‘: ﬁ{

63 00 65 D0/00 00 00 0OF 00 00 QE 00 (

DO 00 00 D000 21 TE &S OO ™M
7 00 7A D0 00 00 DO OF 00 Q0 0C 00 0
=) EE FF FE OC |00 CO 00 00 Yyy.Y . .
JF UU OU) | U FE FFE FE OU EE FE FE O V. .YV
FE _FFE D20/00 00 20 OO/0F OO0 OO0 OC |00 CO 00 00 YWV. . ceeir1asnrne
€F 70 7 70 EF €S 71 00 €E| 61 7 0 popup_unit.nds..

00 00 D0 OF 00 D0 00| 0C OO0 &7 0C | 2E A TERA'L
UL OU JU I Z26 §U 4 OU UV U0 0L I UF
89 46 A2 00 4A 00 9C AE 4B 01|80
2 8) 00 00 D20 00 00 DO OO 00 1DOD

c4 00 00 D0 2F 00 20 0O I’ S& [M[1K oL !

20 00 00 20 00 00 20 QO 00 00 OO 00 00 00

20 00 00 D20/ 00 00 20 OO/0S5 DO QOO 0C DO 00

We can see two main pieces of data changed between a worker and an infantry unit
being recruited: the text (worker vs infantry) and the number beforehand (0x41 vs
@x2c). We can assume that this number may be the internal representation of the type
of unit.

Let's verify that this works, as we are still guessing. First, set a breakpoint on the push
ecx instruction and create an infantry unit. Next, when the breakpoint pops, change
@x2C to 0x41 and infantry to worker. If you then resume the execution and go back in
game, you can see that despite clicking infantry, we are now creating a worker out of
the barracks structure.

There is also other data in this structure that changes but is not directly tied to the unit
being created. While we could reverse the entire structure, we will instead copy the
structure when a worker is created and use those values for our hack.

4.3.6 Locating the Main Game Loop

Now that we have located the function responsible for recruiting units and understand
how to call it, we need to locate a place to call it from. For this chapter, we will choose
to hook the main game loop. Finding the main game loop is easy in our case. First,
place a breakpoint on the call to recruit a unit and create a unit in game so that the

165

breakpoint will pop. Next, continue to step out of each function. Eventually, you will
reach the following call:

If you attempt to execute until return here, you will notice the game will begin and
continue to execute. This is due to the fact that we are in a loop and no ret instruction
is being encountered. We can verify this behavior by setting a breakpoint on this call.
You will notice the breakpoint pops continuously. Both of these factors indicate that this
code is part of the main game loop.

4.3.7 Locating the Player's Money

Finally, we want to monitor our player's money for our hack. Wyrmsun, like other
games, allocates a player's money dynamically, meaning it will be different for each
game. In previous chapters, we have discussed methods to defeat DMA. For this
chapter, we will use Cheat Engine's pointer scan feature instead of reversing the target.

Cheat Engine's pointer scan works similar to regular memory scanning. First, we need
to locate our money address as usual. Then, right-click on the address and choose
Pointer scan:

166

Valuz Type & Bytes

[Mcmory View

LActive Desciiption

[Mo description

Adiess Type

“03AETDC

CopyCrWiile

FastS-an 4

\‘ Pause the gzme v

") Compare & Toggle Selectes Records

Wismosy Scem Optios Generzte pcintermap
e . Puinter scan "ot this eddres
Star Fg“ Find out what accesses this address
Stop ©, Find cut what writes tz this address
Wiilable

Reczloolale nesy sddresse,

I arce recheck syrhals

Cuz
Couy
Pasts

Adz to new croup
Creale Head 2

+ + PP X

In the dialog that appears, keep all the default options and choose OK. When
prompted, select a file anywhere:

£, Pointerscanner scanoptions

[(TUze zaved poirtermap

11

(@) Scar for eddiess (C Scan for addresses with value (O Genersie pointsrmap

U Set/Lhange Jropdown seecion ozuons

Spac

Ctrl+
Cul+

|

[T Compare recults with other szved poirtermap|c)
[Show zdvanced options

[Max differert offsets per node: | 3 |

) Base adiress must be in specific range
[_] Pointers must and with specific offsets

Nr of threads scor.mngD
Maximum otfset v:lu
QK

"] Allow scenrers to connect at runtimc

Pert: 52737 Pzeoword

—JConns=c 1o pointerscan nads

'Narmal

I

Moz level|

‘ Cancel

167

Cheat Engine will now search the target for all pointers that point to the selected
address in some way. When it is finished, you will get thousands of results back:

File Distnibuted pointer scan Pointer scanner
& Hytes T Poinker paths: 54916573

Baze Nddrese Offser 0 Cffzet 1 OFfcat 2 Offzet 3 Offcer 4 Cffeet 5 A
“wyrmsun.oxe "+ DOJ0TDEC 10C
“"CtSWidoets.cll'-000CB... 134
"CHS anck d"=0000082C THC
"CQt3QuickdI"-020126EC 1FO
"CitSWidgebs.dl-0MS28.. 200
“Qt3Gui.dll 0028483C 20C

"QUSWidods JIF-001GD .. SFE 43 0 ad 0 8
"CtSWidgets.ll” 0023A.. 280 0 20 ! 0 3
“"CtSLocation.dll"+20260... ZED 32 20 !] 8
“CHSlnndIr =i 2454 I bl 2l {1 1] 8
"CtSWidoets.dll'-0023A... 770 62 20 ! 0 8
"CHsWdgebs.diF - A.L. BT 4 2l ()] 0] 8
"Ct5Location.dll"+20060... ZED 43 20 ! 0 8
"CQU5Gui dIM-00012454 Z2F8 43 20 d 0 8
"CtSWidgets.ll” +0023A.. 770 73 20 ! 0 e
"QU5Quick dII"-021FBDESL =4 218 28 d 0 8
"Gt5Umidil +0J08LESE - 218 P U v 8
“"Ct5Gui gl -00233654 E2 218 28 ! 0 8
"(A5lacationdil’+ 0042, 4 218 Z2h U U] 8
"Ct3Widoets.cll"<000FF" ... =4 218 26 ! 0 8

q] 8

"CtSNetwork dl"+ 000C2.. 104 218 28

Like regular scanning, we now need to filter these addresses down. Restart your match
so that your goal is moved to a new address. Next, find your money address again.
Then, in the pointer scan window, choose Rescan Memory:

tan: mooFIR - (. X
sted pointer scan Pointer scanner
~ C Scanfor poirter ¢
Resrar memory - Eemoves pointers not pointing to the nght acdress C

e"+00001DEC 70C
dli"+00CCB... 134
I*+COODOE2C "BC

168

In the dialog that appears, enter your new address and hit OK:

Rescan pointerlist X

(®) Address to find: () Value to find:
12BESADC] T

Use saved pointérmap

Only filter out invalid pointers

Only filter out accessible pointers

[] Delay rescan for |0 seconds

Repeat rescan until stopped

Lua filter. function RescanFilter (base, offsets, target):bool

Base pointer must be in range
000DO00000000D000 | and | FFFFFFFFFFFFFFFF
Must start with offsets

Must end with offsets

QK Cancel

Like regular filtering, Cheat Engine will now rescan all the previously identified pointers
and see if they are still correctly pointing at your new address. Repeat this operation
several times, and eventually you will find a few pointers that always correctly point to
the player's money value. For this chapter, we will use:

+0x14

[+0]

[+0x4]

[+0x8]

[+0x4]

[+0x78]

wyrmsun.exe + 0x0061A504

169

We will discuss how to use these values in our code, so feel free to substitute in
whatever value you find.

4.3.8 Dealing with Dynamic Code

At the beginning of this chapter, we discussed how code was dynamically loaded and,
as a result, addresses would not be consistent. You can verify this behavior by starting
Wyrmsun, noting an address, restarting your VM, and opening Wyrmsun again. You will
notice that the address no longer contains the same code.

Just like DMA, we know that the game must have some way to locate its code. When
dealing with dynamic code, generally games will offset all addresses from the game's
module base address. We can observe this behavior by looking at the creating unit
call. While the first byte will change, the call always ends in @x2CF7 (e.g., @xF42CF7 or
0x292CF7).

We can determine the base address of the main module by going into the Symbols tab
in x64dbg:

-

re
e
I
A
'c
1
re
re
1
T
T
I
t
e
rl
2
rc
rl
33

We can see here that our base address is 9x00F40000. As such, we know that the
create unit function will exist at the base address + @x2CF7. Likewise, we saw that in
this chapter, the call to create unit was at @x01163471. If we subtract this address from
the base address, we get an offset of @x223471. We can use these offsets when
creating our DLL to automatically calculate the addresses of functions we care about.

170

4.3.9 Creating our DLL

Like in previous chapters, we will create a DLL to inject into our target. First, we will
start with our base:

#include <Windows.h>

BOOL WINAPI D11Main(HINSTANCE hinstDLL, DWORD fdwReason, LPVOID 1pvReserved)

{
DWORD old_protect;

if (fdwReason == DLL_PROCESS_ATTACH) {
//hooking code here
ks

return true;

Our DLL will have two code caves. First, we will create a code cave at the code
responsible for creating a unit. In this code cave, we will retrieve the value of ecx and
copy the structure it points to into our DLL's memory. Our second code cave will hook
the main game loop. In this code cave, we will check the current player's money value
and then call the create unit function.

4.3.10 Create Unit Code Cave

When we reversed the create unit function, we identified the structure that was pushed
as an argument to the function. While we identified several components of this
structure, we did not fully reverse it. Since this structure does not change when creating
worker units, we will use a code cave to copy a valid form of the structure. We will then
use this copied form in our main game loop code cave.

First, we will hook the address for creating a unit and direct it to our code cave, as we
have done in previous chapters. Since the code's addresses change, we will determine
the address based on the base address of the module. We will also use this base
address to calculate the recruit unit call location:

HANDLE wyrmsun_base;

171

DWORD recruit_unit_ret_address;
DWORD recruit_unit_call_address;

wyrmsun_base = GetModuleHandle(L"wyrmsun.exe");

unsigned char* hook_location = (unsigned char*)((DWORD)wyrmsun_base +
0x223471);

recruit_unit_ret_address = (DWORD)hook_location + 8;
recruit_unit_call_address = (DWORD)wyrmsun_base + Ox2CF7;

VirtualProtect((void*)hook_location, 8, PAGE_EXECUTE_READWRITE,
&old_protect);

*hook_location = OxE9;

(DWORD)(hook_location + 1) = (DWORD)&recruit_unit_codecave -
((DWORD)hook_location + 5);

*(hook_location + 5) = 0x90;

*(hook_location + 6) = 0x90;

*(hook_location + 7) = 0x90;

In our recruit unit code cave, we will first retrieve the value of eecx and place itin a
variable:

DWORD* base;

__declspec(naked) void recruit_unit_codecave() {
__asm {
pushad
mov base, ecx

With this pointer now stored in the base variable, we can dereference this pointer to
retrieve the location of the structure. With the pointer dereference, we can then copy
the entire structure into another variable to use in our other code cave. We can retrieve
the size by observing the size of the structure in x64dbg. Additionally, we will create an
init variable to track whether this has occurred yet:

DWORD* unitbase;

unsigned char unitdata[0x110];
bool init = false;

172

unitbase = (DWORD*)(*base);
memcpy(unitdata, unitbase, 0x110);
init = true;

Finally, we will restore our registers and the original instructions:

_asm {
popad
push ecx
mov ecx, esi
call recruit_unit_call_address
jmp recruit_unit_ret_address
ks

4.3.11 Game Loop Code Cave

With our data copied into a buffer, we can now create our game loop code cave. Like
before, we will begin by hooking the address that we identified earlier:

DWORD gameloop_ret_address;
DWORD gameloop_call_address;

hook_location = (unsigned char*)((DWORD)wyrmsun_base + ©x385D34);
gameloop_ret_address = (DWORD)hook_location + 5;
gameloop_call_address = (DWORD)wyrmsun_base + OxDBCA;

VirtualProtect((void*)hook_location, 5, PAGE_EXECUTE_READWRITE,
&old_protect);

*hook_location = OxE9;

(DWORD)(hook_location + 1) = (DWORD)&gameloop_codecave -
((DWORD)hook_location + 5);

In our game loop code cave, we will first check the value of our player's money. We will
use the pointer and offset that we received from Cheat Engine to do this:

DWORD *gold_base, *gold;

173

__declspec(naked) void gameloop_codecave() {
__asm {
pushad
}

gold_base = (DWORD*)((DWORD)wyrmsun_base + 0x0061A504);
gold = (DWORD*)(*gold_base + 0x78);

gold = (DWORD*)(*gold + 4);
gold = (DWORD*)(*gold + 8);
gold = (DWORD*)(*gold + 4);

gold = (DWORD*)(*gold);
gold = (DWORD*)(*gold + 0x14);

Next, we will check to see if our unit buffer has been initialized and if the player's
money is over 3000. If so, we copy our buffer for the worker into the buffer pointed to
by the game, and move the base into ecx before calling the recruit unit function:

if (init && *gold > 3000) {
memcpy(unitbase, unitdata, 0x110);

__asm {
mov ecx, base
push ecx

call recruit_unit_call_address

Once again, we need to restore the original instructions:

__asm {
popad
call gameloop_call_address
jmp gameloop_ret_address
}

Finally, we can build this DLL and inject it into our game. In game, recruit a unit to copy
our buffer and then start collecting money. You should notice that workers begin to get
recruited instantly.

The full source code for this chapter is available in Appendix A.

174

Part 5
FPS Hacks

5.1 3D Fundamentals

5.1.1 Overview

In the previous chapters, we focused on hacking two-dimensional (2D) games. While
many of the techniques we have covered can be applied to any game, there are unique
techniques that only apply to three-dimensional (3D) games. To make hacks like
wallhacks or aimbots for 3D games, we need to understand how 3D games actually
work.

5.1.2 Coordinates

When we say a game is 2D, we are referring to the fact that all objects in the game can
be located by a coordinate pair. These coordinate pairs contain two values: X
(horizontal position) and Y (vertical position). Coordinate pairs are usually referenced
with parentheses around them, like (X, Y).

Using the screenshot from Wesnoth as an example below, let's imagine we had a point
(0, 0) in the bottom-left of the screen and a point (10, 10) in the top-right. The
highlighted unit could be represented by the coordinate (7, 5) and the un-highlighted
unit could be represented by the coordinate (3, 1).

176

The game uses these coordinates for many critical operations. For example, when a
player attempts to move, the game will verify that the player's new coordinates will not
be in water or impassable terrain. All 2D games use coordinates in this manner,
whether the game has a top-down or side view.

%ﬁy~»~»~w-»m»~»~»~»yypﬁy&ﬁ~www~w%w»~

A

j %%M%» m@w% %Mmm?w,%mwwﬁw%%»y
'Z”&% ” %@%%%%%Z%%%%%ﬁgwwwﬁm o o g

l
N S il »w %ﬁp@»@%&%%%%%"%%w%w»u%%%%@w.

Bt s IS

W

5.1.3 3D Space

When playing Wesnoth, one thing you may notice is that two units can never share the
same coordinates. This is because the game would not be able to properly display
each unit to the player without having special logic to handle switching between the
two images. However, in 3D games, two units can share the same horizontal and
vertical coordinates.

177

As you can see, the other player and our current player are both in the middle of the
screen and have the same (X, Y) values. However, in 3D games, coordinates are
represented with three values: X, Y, and also Z (depth). In the example above, both
players could be at (5, 5) in 2D space, but their 3D coordinates could be (0, 0, 0) and
(0, 0, 5).

5.1.4 Cartesian Coordinates

One of the easiest ways to understand the relationships between coordinates is
through the use of Cartesian coordinate systems. For example, we could graph our first
Wesnoth example like so:

178

10,0)

The strength of visualizing the coordinates like this is that we can then use normal
geometric operations. Let's say we wanted to get the distance between these two
units. By creating a right triangle from the two units, we can use the Pythagorean
theorem to calculate that triangle's hypotenuse. Due to the way we created this
triangle, this hypotenuse would represent the distance between these two units:

~

[
(3.1)

(0,0}

179

3D coordinates can also be graphed with the addition of another axis. Our 3D game
example above might be graphed like:

L

-10,0,5)

N
A

(0,0,0) X

Notice how, despite each player having identical X and Y coordinates, they exist in
different places on the graph.

5.1.5 Viewports

Monitors display a 2D image on a flat screen. Therefore, it is impossible for monitors to
render a 3D scene directly. Instead, the 3D world must be converted into a 2D scene,
like taking a picture. Games will often have functions for this, typically called some
variation of WorldToScreen. Sometimes, when programming hacks such as displaying
text above a player's head, you will need to write this code yourself. In Chapter 5.9, we
will discuss how to write this code for any game.

180

A key aspect of 3D-to-2D conversion is that games will choose a viewport, or a view
into the game's world. This will often be the current player's view, but in games that
support free cameras, this could be any position. For this viewport, the game will then
calculate the depth for all objects in the scene. It will also draw objects that are farther
away "behind" objects that are closer. For example, in the following viewport, the
game first draws the building in the background. It then determines that the trees are
in "front" of the building in the current viewport and draws them on top of the
building. In this way, the game achieves the illusion of depth.

B it

—

i - &) T‘ i Y B o 5 . -~
- - - .- - n -
.- V.l 1 ” e - i Vv '
- ” - . -~ < " - : -~ “
& e v > - L f' n “ N —~—
= 'é s pr= & I e s "3 > & - X g N
el o re> & — R »~ ke <
i 1':'.‘{ ity \(’ - . “-\ 2 4 l\\ = <
.("' - v > -2 (":.—") 2 » L] Cad 5 oy ~
- v sy 4 2 S XA T -eud o SN

5.1.6 3D Movement

Operations in 3D space are expensive to compute. Because of this, games will often
take several shortcuts to optimize their performance. One these shortcuts is always
placing the player at the origin, or point (0, O, 0). This way, all distances and angles for
objects can be calculated by just retrieving that object's coordinates instead of having
to subtract the object's position from the player's position. However, if the player is

181

stuck at (0, O, 0), they will be unable to move. To achieve the illusion of movement,
some games will instead rotate the entire world around the player. For example, if you
press the key to move forward, the game will respond by moving the whole world
toward you instead of moving your player forward. Not all games work like this, but
several well-known ones use this model.

182

5.2 Wallhack
(Memory)

5.2.1 Target

Since we are shifting to a new dimension, we have to shift to a new target. Several of
the following chapters will be targeting Urban Terror 4.3.4. This game is an FPS based
on the Quake engine.

Like Wesnoth, this game is open-source and has no integrated anti-cheat. It also runs
well on low-spec hardware. Unlike Wesnoth, the Chocolatey package is broken. Due to
this, the best way to install the game is to download and run the installer from the site.

You will need to enable 3D acceleration in VirtualBox for the game to function.
Depending on your computer's hardware, it may not be possible for your machine to
run a 3D game inside a VM. In this case, you have several options. Some are better

than others:

1.
2.

Explore another hypervisor, like VMWare or Hyper-V.

Use another machine as a dedicated hacking computer and isolate it from your
home network.

Find another target game with even fewer requirements and follow along with
the concepts of the following chapters.

Partition your hard-drive and dual-boot. Even if you encrypt your personal drive,
it is possible for malicious tools to access your personal data.

Run the target and tools on your personal machine and hope that nothing
malicious happens.

5.2.2 |dentify

Our goal in this chapter is to create a wallhack, a type of hack that allows us to see
other players through walls. We will not modify any of the graphics functions of the

183

https://www.urbanterror.info/

game. Instead, we will use the game's rendering logic and modify sections of the
game's memory.

5.2.3 Understand

In 3D games, depth testing is used to determine when an item should be visible in the
player's viewport. For example, if a player is behind a wall, depth testing will tell the
rendering logic of the game to not draw the player.

All wallhacks operate on the principle of disabling depth testing. One way to do this is
by hooking the graphics library of the game and disabling depth testing through library
functions. We will cover this approach in the next chapter. In this chapter, we will rely
on the game's built-in rendering logic to achieve our goal.

Games have to draw many dynamic objects, including players, weapons, and map
assets like doors. These objects are normally referred to as entities. To simplify
development and increase performance, games will often use the same function for
drawing all of these entities.

However, these entities often have different rendering considerations. A game may
want to draw shadows on characters, but not on static entities like doors that can be
opened. Games will often have structures for each entity and store these rendering
considerations in the entity's structure. When the entity is rendered, the game will
check this member and render the entity according to it.

For some entities, like puddles of water or glass, games will want to disable depth
testing. Because of this, the render member in the entity class will have a disabled
depth testing value. If we can locate the function responsible for drawing entities and
then modify all entities to contain this disabled depth testing value, players will appear
through walls.

5.2.4 Target Setup

All games that are based on the Quake engine have a console. This console can be
accessed by hitting the tilde (~) key while in game. This console allows you to run
commands, such as moving the player or changing a map. These commands typically
start with a backslash (\) and can be auto-completed by hitting tab. Some helpful
commands for our purposes are:

* \devmap abbey - start the map Abbey with cheats enabled

184

e \g_gametype O - set the default game mode to deathmatch
e \bot_enable 1 - enable bots to join a game
* \reload - restart the current map

. \addbot boa 1 - add a bot

In addition to these commands, we can easily switch the game to a windowed mode
by hitting Alt+Enter.

5.2.5 Locating Draw Entities

By exploring the commands available to us, we can find several drawing commands
under \r_:

t-linish = 70
r-{ace?laneCull = 1"
r-talINIdih = 16
t.tailCoreNidih = 7%
r~rallSeamentlenath = "32'

. OL1isCoolDonalsee = D'

tulasiValidRenderer « "SVGASDY bal |4 RELEASE!
rmapoverdriahidits = "0

roverdrightaits = D'
tdrasmiclight = 4

r-oxi compressed_fextures = "D
teloxiureomde = QL LINEARNIPNAP_NEAREST"
r.lodCurvelrrar » 80D

rprimitlives =
tdeclurebils =
tatolordifs =

32"

9
2

t-tvaplinterval = 70
r-tonferNiadeon = |
t-aodorder = 70
rfullscreen = 70
temde = 8
r.ditplayratrash = °D°
raamm = 1.2
t.picmip = 0
INradian
' = TRL_BACK'
1

1_drawSun
INedrav.

All

The most important command to us is r_drawentities. By setting this value to O, entities
are not drawn in the game, including our player:

185

17:01:06

We can assume that the game's code looks something like:

if(r_drawentities == 1) {
draw_entities();

}

To find this code, we will use Cheat Engine to find the address of the variable holding
the r_drawentities value. We can switch the value of r_drawentities in the console
from O to 1 to narrow this value down. Then, we can use a breakpoint on access in
x64dbg to locate the code that accesses this value. The breakpoint should pop at the
following code:

186

We can see that the value of r_drawentities is loaded into ecx and then tested. Testing
a register against itself compares that register's value to 0. If the value is equal to 0, the
game jumps over the call at @x52F717. This call is most likely responsible for drawing
entities in the game. We can confirm this by nop’ing out this call. When it is nop'd, the
game will not draw any entities.

5.2.6 Entities and Rendering

If we step inside the call at @x52F717, we see the following code:

We can see in the second highlighted block that values are loaded into several
registers and compared to certain values. If these values are equal, the game jumps to
different locations and executes different rendering code. If we look closely, we can see

187

that the registers are based on values of the address held in ebx. If we look up at the
first highlighted block, we find the closest location in which ebx is set. We now know
that at address @x52D2FD, ebx contains what is most likely the current entity to render.
If we set a breakpoint at this address and observe ebx's address in the dump, we see a
chunk of data:

_

r Jds:[0102AE98 " BALT"]

SO2F0 quakesi-urr.exc:sizar

Ml Oump 2

00 00 Of
00 oot

Since this chunk of data is isolated from other data and in one continuous section, we
can assume that it represents a structure of some type. For example, it might look
something like:

struct entity {
int type;
int render_type;
float location[3];

To determine what location of the structure holds the render type, we must reverse this
structure.

5.2.7 Reversing the Entity Structure

There are many ways to reverse an unknown structure in a game. One way is to build
up a dataset of valid values and then make inferences based on these values. For
example, if all the structures contain one member that constantly increases, we can
assume that this member is being used as a counter of some type.

188

In this case, our goal is not to fully reverse the entity structure, but to only reverse
enough to find the render type variable. Since we have located the code responsible
for drawing entities, we can set a breakpoint in that code and observe entity structures.
Like we discussed in the last section, at address @x52D2FD, ebx holds the address of
the current entity to render.

You will notice that each time our breakpoint is hit, ebx contains a different value.
While we could manually follow ebx in the dump each time the breakpoint is hit, a
more convenient way is to use the Watch feature of x64dbg. Adding an expression to
the Watch panel allows us to observe it independently of the dump. In this case, we
can watch the expression [ebx] and always view the current value of the address in ebx.

To add a value to watch, open up the Watch panel (near the dumps), right-click, and
choose Add:

X . hnore

Jd dnorc

v dword prIr
dward pTr
ca dnerec

dward pTr

e dnorec o
‘4 0L T.32l
s aonnne™ nore
BEF6 test es es
JFES TDOCODDD lake3- Le 520
suso ‘ cdY ,dnCrc prr
R3IFF 0A . y
OF8T 0
B3FF O
N US
RSFF
IFS8S ake3- .
dwourd pilr 5
dward pTr 5

f
1=0CCODE20D
170770 812

Jump 3 ~ "W pups o

watchdog Mode

189

In the modal that appears, type your expression. In this case, we want to start with just
[ebx]:

We want to also observe the first chunk of the entity structure. For now, we will assume
that all these values are 4 bytes long. Add watches for [ebx+4] through [ebx+2C]. After
you are finished, the Watch panel should look like:

CTA474 N3 GHAF)

cward pre As: [N0ZAEDE ™ DANT T 0F 21
cbx=O0CCOCEED

LToX

W fump |

Nane 1 Vall TVpe
s
VINT
UINT
LNl

0| UTNT
VINT
UINT
alurs
VINT
VINT
UINT

With all of this set up, disable your breakpoint and load into a map with water. The
map Abbey has a fountain near the top-left of the map. Make sure you are facing the
water and can see the ground beneath it.

190

With all of this set up, re-enable your breakpoint at @x52D2FD and it should pop
instantly. After observing the value of the watch panel, continue execution. After
observing many iterations, you should start to notice some trends.

Expression g
[ebx) 4 Disabled
Cisabled
Disablecd
-5 i) Dicabled
dx10] DOO00000 JU Disabled
+x14] 00000000 1U Dicahled
1 X+Ix181 00000000 U D3
BF7FFDCA 3

BB25B2C4H

sBIC493A

SBEOATOS

BF1LAFADF

SN AW N

Vv W

8
9

191

ExXpression
[ebx]

B0 X+ 4
eDx+8

value

00000000
QUOOUNLD
00000)/9

watchdog Mode

Disablec
isablec
isablec

eDX+< | (118 81010081000
lebx+0x10] 00000
| ebx+0x14] 00000
lebx+0x18] 00000D(

isablec
isablec
isablec
isablec
isablec
isablec
isablec
isablec
isablec

IOVIAWN

D
D
D
D
D
D
)
D
)
D
D

EXpression value Nat<hdog
Febx] 00000000 Disabled
00000082 Pisabled

NSNS IVEN) Pisabled

Pisabled

Pisabled

Pizabled

Disabled

. Disabhled

ebx+0x20 3E82343AC isabled

ebx+0x24 BF7490D9 isabled

[ebx+0x28) BF6FA308 Disabled
ebx+0x2C 3EB1ES 8F Disabled

o Wi

"

The value of [ebx] (red) always appears to be 0. The value of [ebx+4] (blue) appears to
alternate between 0xD, 0x40, 0x82, and 0x83. The value of [ebx+8] (white) appears to
increase consistently, from @x79 to @x8@ to @x81, and so on. The values highlighted in

pink appear to alternate between seemingly random values and 0. Likewise, the values
highlighted in yellow appear to be random, yet consistently tied to [ebx+8].

All this data can be overwhelming, but we can make sense of it by eliminating values
we do not care about. We know that we have at least three entities on the screen: our
player model, our weapon, and the water. We can assume there are probably other
entities, such as doors, as well. Since most of these entities share many similarities, we
want to look for data that is relatively consistent between at least two entities.
However, we also know that some of the entities should not share this value.

With this model, we can eliminate [ebx] (red), since it is always 0. We can also eliminate
[ebx+8] (white), since it is unique for each entity. Both the values in pink and yellow
appear unique for each object. This leaves us with [ebx+4] (blue), which alternates
between 0xD, 0x40, 0x82, and @x83. For now, we will guess that this is our rendering
value and investigate each value.

192

5.2.8 Modifying Rendering Value

If we set the value of [ebx+4] for each entity, it will be overwritten the next time the
draw entities function is called. It appears that the entity is being loaded into ebx from
another location. Therefore, the easiest way for us to explore our assumed rendering
value is by hooking the location @x52D2FD and setting [ebx+4] for every entity. We
could create this code cave in x64dbg, but to make it easier for us to test multiple
values, we will create our hook in a DLL.

We will use the same hooking structure discussed in Chapter 3.4. Our hook will be at
@x52D2FD, since we know ebx will contain the correct value at that point. Our hook
itself will be relatively simple: we will save the registers, set the value of [ebx+4],
restore the registers, and then execute the original mov instruction:

DWORD ret_address = 0x0052D303;

__declspec(naked) void codecave() {
__asm {
pushad
mov dword ptr ds:[ebx+4], 77?7
popad
mov dword ptr ds:[@x102AE98], ebx

jmp ret_address

For our first value, let's start on the highest end and try 0x83:

mov dword ptr ds:[ebx+4], 0x83

Once the DLL is injected and you are back in the game, you will notice that nothing
appears to change. Likewise, if you try @x4@, you might notice that some shadows
seem different, but everything looks pretty similar. Next, let's try @xD:

mov dword ptr ds:[ebx+4], @xD

Immediately, you should notice that your character's model now appears see-through
in front of the camera:

193

Waiting far players

A

This is a good sign that depth testing may have been disabled. Next, switch to third-
person mode (cg_thirdperson) and add some bots. As you move around, you should

notice that you can now see all bots through walls:

ou worehitin the Hight Arm by o v demage;
fou were Rt i tie Vest by of 22% damnee:] 70467

vy vl Pl eS| by o Zesdaimue
O TR t'ﬂ%hr rain hy Tar JL4% damage

With this, we have successfully set the rendering value for all entities to disable depth
testing. We can see that other entities, such as guns and stairs, appear through walls as
well.

One improvement is to re-enable depth testing for our player model so that first-
person mode is not corrupted. To do this, you will need to identify the player structure
and your current player.

The full source code for this hack is available in Appendix A for comparison.

195

5.3 Wallhack
(OpenGL)

5.3.1 larget

Our target for this chapter will be Urban Terror 4.3.4.

5.3.2 Overview

Most games make use of external graphics libraries for rendering. The two most
popular graphics libraries are DirectX and OpenGL. Both of these libraries are loaded
by games dynamically. Once they are loaded, games then invoke functions in these
libraries. For example, with OpenGL, games can make use of the glDrawElements
function to draw a series of elements from data stored in an array. Since these libraries
are external, the game's developers do not need to implement the rendering logic
themselves.

5.3.3 |dentify

Our goal in this chapter is to create a wallhack by hooking the game’s graphics library
and modifying its logic to display entities through walls.

5.3.4 Understand

DirectX and OpenGL each have different functions for rendering that require different
approaches to hook. Our first goal is to identify the library that the game is using. As
each library has several functions to handle rendering and shading, we will then need
to find a function that is used by the game for rendering. With the function identified,
we can then hook it and disable depth testing through the use of a code cave. This will
cause all entities to be rendered regardless of where they are in the 3D world.

196

5.3.5 Locating Drawing Library

Since graphics libraries are loaded dynamically, they must expose their functions to the
main executable. Most debuggers allow you to view all the libraries loaded into an
executable when attached. In x64dbg, this information is collected under the Symbols
tab.

W OunondLrlaes - M08 - Wos b ridid | - Thwe:t 3064 (owtdcted foen Main Nyaach - 313d=g

L L

CIET000)

As we can see in the highlighted elements, opengl32.dllis being loaded into the
game's process. By selecting the OpenGL module, we can see that it exports many
drawing-related functions. From this information, we can conclude that this game is
using OpenGL to render its graphics.

197

5.3.6 Locating the Drawing Function

OpenGL has several rendering approaches, and different games will use different
approaches. For example, older games may use glBegin, glVertex, and glEnd; some
games may use glDrawArrays; and others may use glDrawElements. Some even use a
combination of these approaches to render different aspects, such as glDrawElements
for player models and glBegin for screen effects like blood.

Typically, modern games will not use glBegin, glVertex, and glEnd, as these functions
are considered deprecated. For that reason, we won't be focusing on those functions
right now. Instead, we will first investigate glDrawElements, as this is a commonly used
function. Due to how OpenGL works, we will expect this function to be called
constantly if it is used by the game.

By scrolling down to the glDrawElements export in the Symbols tab, we can see that
OpenGL exports it to the process, though this is not a guarantee that it is being used:

xporL : g ICopy TexSublmagel
Export gltopylexsSublmaqe2l
Exporl glCul IFace
Export gluebugkntry
Exporl glDelelel isly
Export - glueletelextures
Export glDepthFunc
rxport . glneprhamask
Export g1DepthRange
rxport | 7 glnisable
Export | 72 glDisableClientState

Cxport | 73 glDrawArrays
Export | 7 glurawsuffer

Q |Drawe lemnenly
gluraw=ixels

g |EdygeF lag

Export gledge-lagrointer
Exporl g |EdgeF lagv

rxport glrnahle

Export glEnakbleClient5tate
rxport ; glrnd

Export) glEndList

Exporl
Export
Exporl

[B 3 T W

c

198

By double-clicking on the export entry, x64dbg will display the function:

MMy M20 Gl Sk

Next, we can start a game and set a breakpoint on glDrawElements. You will notice
that it will immediately pop, and pop continuously every time the game is resumed.
This is a good indication that this function is responsible for rendering entities. To verify
that this is the case, we can replace the first instruction with the ret statement we see at
the end of the function. The effect of this will be to immediately return to the calling
code without executing any of the glDrawElements logic:

If you then resume execution and attempt to play the game, you will notice that no
new entities are being rendered to the screen:

199

N

Waliting ft

This gives us strong proof that Urban Terror is using glDrawElements to display
entities.

5.3.7 Hooking glDrawElements

Examining the glDrawElements function, we can see that it has very few instructions.
Given the complexity of rendering entities to a screen, the majority of the code must
be contained in the two calls near the end of the function:

200

MISMINY M2D ¥ s

Therefore, if we hook an instruction before these calls, we should be able to
accomplish our goal of disabling depth testing. A good candidate instruction is the
mov at @x61B9(C526.

Since OpenGL is loaded dynamically, our hooking approach will have to be slightly
different. First, we will need to ensure that OpenGL is actually loaded. As we are
injecting our DLL into the application when it is first started, this will not be the case.
After we ensure that OpenGL is loaded, we need to figure out where it is loaded. Once
we determine the base address of OpenGL, we can then determine where
glDrawEntities is located inside the OpenGL module.

We will use a combination of techniques that we explored in previous chapters. To
address the issue that OpenGL will not be loaded when our DLL is injected, we will
create a thread to handle the hooking logic. This will allow us to create an infinite loop
that waits until OpenGL is loaded, similar to the thread we saw in Chapter 3.3:

if (fdwReason == DLL_PROCESS_ATTACH) {

CreateThread(NULL, @, (LPTHREAD_START_ROUTINE)injected_thread, NULL, @,
NULL);
ks

In our thread, we will create an infinite loop that will call GetModuleHandle. This API
returns the module handle, or base address, for a loaded module. If the module is not
loaded, it will return NULL:

HMODULE openGLHandle = NULL;

void injected_thread() {
while (true) {

201

https://docs.microsoft.com/en-us/windows/win32/api/libloaderapi/nf-libloaderapi-getmodulehandlea

if (openGLHandle == NULL) {
openGLHandle = GetModuleHandle(L"opengl32.d11");
ks

Sleep(1);

When we have the base address of OpenGL, we can then find where glDrawElements
is located. To do this, we will make use of the GetProcAddress API. When given a
module and the name of a function, this APl returns the address of the function:

unsigned char* hook_location;

if (openGLHandle !
hook_location
“glDrawElements™);

NULL) {
(Cunsigned char*)GetProcAddress(openGLHandle,

This API will return the location of the first instruction in the function, in this case nop.
Since we want to hook the mov instruction, we can subtract its distance from the first
instruction and then add that difference to the result of GetProcAddress. The distance
between these two instructions will always be the same, as they are part of the library's
code and not loaded dynamically.

MMMy M2D F s

61092525
6109:510

This offset can be added directly to the hook_location variable to get our location:

hook_location += 0x16;

Finally, we can hook the code as we have done in previous chapters:

202

https://docs.microsoft.com/en-us/windows/win32/api/libloaderapi/nf-libloaderapi-getprocaddress

VirtualProtect((void*)hook_location, 5, PAGE_EXECUTE_READWRITE,
&old_protect);

*hook_location = OxE9;

(DWORD)(hook_location + 1) = (DWORD)&codecave - ((DWORD)hook_location + 5);
*(hook_location + 5) = 0x90;

5.3.8 Function Pointers

With glDrawElements hooked, we can start working on the code cave. Our goal is to
disable depth testing when an element is being drawn. To do this, we can use an
OpenGL function called glDepthFunc. glDepthFunc allows you to set the function
used for depth comparisons when OpenGL attempts to render the screen. This can be
several values, but the ones we are interested in are GL_LEQUAL (draw if the element
is in front of another element) and GL_ALWAYS (always draw).

For our wallhack, we will set the depth function to GL_ALWAYS right before any
element is drawn. This will have the effect of making all elements always appear,
regardless of where they actually are in the 3D space.

To start, we will need to locate glDepthFunc. We can use GetProcAddress in a similar
manner to glDrawElements. However, instead of finding an address to hook, our goal
with this call to GetProcAddress is to store the function's address in a way that we can
then invoke in our code cave. The easiest way to do this is through a function pointer.

Just like pointers we have used in previous chapters, function pointers point to an
address. However, unlike the pointers we have been using to modify data and code,
we can also declare a pointer to point to a function. We can then call this function, or
address, like we would call any other C++ function.

To declare a function pointer, we need to know the original function's definition. The
definition of a function includes its return type and its parameters. We can get this
information from the Khronos Group site:

void glDepthFunc(GLenum func);

Looking at the gl.h header file, we can find out what GLenum is:

typedef unsigned int GLenum;

203

https://www.khronos.org/registry/OpenGL-Refpages/gl4/html/glDepthFunc.xhtml
https://www.khronos.org/opengl/
https://www.khronos.org/registry/OpenGL/api/GLES/1.0/gl.h

So far, we can define our glDepthFunc function like so:

void glDepthFunc(unsigned int) = NULL;

Next, we will modify this declaration to have it act as a pointer to this function:

void (*glDepthFunc)(unsigned int) = NULL;

We can now assign this to the result of GetProcAddress:

glDepthFunc = GetProcAddress(openGLHandle, “glDepthFunc™);

However, if we try to build this, we will get the following error:

error C2440: '=': cannot convert from 'FARPROC' to 'void (__cdecl *)(unsigned
int)'

message : This conversion requires a reinterpret_cast, a C-style cast or
function-style cast

Like we have seen in previous chapters, we need to cast the result of GetProcAddress
properly for the compiler to understand how to translate the result. We can use the
error message to quickly figure out how we need to cast the result:

glDepthFunc = (void(__cdecl *)(unsigned int))(openGLHandle, “glDepthFunc™);

5.3.9 glDrawElements Code Cave

Our code cave will be similar to code caves we have written previously. We will start
with our skeleton and restore the original code:

DWORD ret_address = 0;

__declspec(naked) void codecave() {
__asm {
pushad

}

__asm {

204

popad
mov esi, dword ptr ds : [esi + OxA18]
jmp ret_address

Unlike previous chapters, we do not have a static location to jump to. Instead, we will
need to calculate our return location similarly to how to we calculated the hook
location. In our thread, after we assign the hook location, we can also dynamically
assign the return location:

ret_address = (DWORD)(Chook_location + @x6);

With our skeleton in place, we can now add in our call to glDepthFunc. First, we need
to find the value for GL_ALWAYS. We can find this in the gl.h header file:

#define GL_ALWAYS 0x0207

Next, we can invoke glDepthFunc to disable depth testing. Since it is a function
pointer, we need to dereference the pointer to invoke the function:

(*glDepthFunc)(0x207);

Our code looks like:

#include <Windows.h>

HMODULE openGLHandle = NULL;

void (*glDepthFunc)(unsigned int) = NULL;
unsigned char* hook_location;

DWORD ret_address = 0;
DWORD old_protect;

__declspec(naked) void codecave() {
__asm {
pushad
}

205

https://www.khronos.org/registry/OpenGL/api/GLES/1.0/gl.h

¥

(*glDepthFunc)(0x207);

__asm {
popad
mov esi, dword ptr ds:[esi+0xA18]
jmp ret_address

void injected_thread() {

while (true) {
if (openGLHandle == NULL) {
openGLHandle = GetModuleHandle(L"opengl32.dl11");
}

if (openGLHandle '= NULL) {
glDepthFunc = (void(__cdecl *)(unsigned

int))GetProcAddress(openGLHandle, "glDepthFunc");

hook_location = (unsigned char*)GetProcAddress(openGLHandle,

"glDrawElements");

hook_location += 0x16;

VirtualProtect((void*)hook_location, 5, PAGE_EXECUTE_READWRITE,

&old_protect);

*hook_location = OxE9;
(DWORD)(hook_location + 1) = (DWORD)&codecave -

((DWORD)hook_location + 5);

}

*(hook_location + 5) = 0x90;

ret_address = (DWORD)(Chook_location + @x6);
ks

Sleep(1);

BOOL WINAPI D11Main(HINSTANCE hinstDLL, DWORD fdwReason, LPVOID 1pvReserved)

{

if (fdwReason == DLL_PROCESS_ATTACH) {
CreateThread(NULL, @, (LPTHREAD_START_ROUTINE)injected_thread, NULL,

@, NULL);

}

return true;

206

We can now build this code and inject it into Urban Terror to see if it works.

5.3.10 Calling Conventions

When our DLL is injected, you will notice that the game will crash instantly when
starting with the following error:

Microsaft Vicual (++ untime | ibrary

Debug Error!

Program:
Ch\Users\EUser\source\repos\Wallhack\Debug\Wallhack.dll
Module:
CAUsers\EUser\source\repos\Wallhack\Debug\Wallhack.dll
File:

Run-Time Checdk Failure #0 - The value of ESP was not properly
saved across a function call. This is usually a result of calling a
function declared with one calling convention with a function
pointer declared with a different calling convention.

(Press Retry to debug the application)

If we remove the call to glDepthFunc in our code cave, the game no longer crashes. It
looks like our function pointer is not correct in some way. If we look at gl.h, we see that
glDepthFunc is defined as:

GLAPI void APIENTRY glDepthFunc (GLenum func);

207

In Microsoft's documentation on data types, we see that APIENTRY is a reference for
WINAPI. If we look at the entry for WINAPI, we see that it is a reference for __stdcall.
Let's try adding this prefix to our function pointer:

void (__stdcall *glDepthFunc)(unsigned int) = NULL;

Building this code results in a familiar error:

error C2440: '=': cannot convert from 'void (__cdecl *)(unsigned int)' to
'void (__stdcall *)Cunsigned int)’

This can be fixed by changing the cast as we did before:

glDepthFunc = (void(__stdcall*)(unsigned int))GetProcAddress(openGLHandle,
“glDepthFunc™);

Calling conventions control how parameters are handled by functions when called.
There are many different types, but for our purposes, we just need to know that Visual
Studio uses __cdecl by default, whereas OpenGL defaults to __stdcall.

With this change, build the code and inject it again. You will notice that Urban Terror
no longer crashes.

5.3.11 Checking Counts

If you join a game, you will notice that you are now able to see entities through walls.
The only problem is that you can see too many things:

208

https://docs.microsoft.com/en-us/windows/win32/winprog/windows-data-types

In our current hack, we are disabling depth testing for every element drawn on the
screen, including walls and stairs. Ideally, we only want to draw players through walls.
To accomplish this, we will have to filter out elements that we do not care about.

glDrawElements has the following definition:

void glDrawElements(GLenum mode,
GLsizei count,
GLenum type,
const void * indices);

The count parameter specifies the amount of elements, or vertices, to be rendered.
More detailed objects will have a higher amount of vertices. For example, a player
model will have more detail (nose, hands, fingers, etc.) than a floor. By ensuring that
the count parameter is a certain value, we can filter out elements that we do not want
to display through walls.

209

https://www.khronos.org/registry/OpenGL-Refpages/gl4/html/glDrawElements.xhtml

We know that this parameter will be on the stack when our hook is jumped to. To
retrieve its exact location, we can inject our DLL and set a breakpoint on
glDrawElements. As we step through the code, we can identify where it is on the stack
at the time our code cave gets called.

One feature of x64dbg is the ability to view the current parameters on the stack in a
similar manner to how they would be passed in C. This feature is under the panel
showing the values of the registers:

x64dbg is not able to fill this in automatically, so you will need to set the calling
conventions and the number of parameters. If we trigger our breakpoint on
glDrawElements multiple times, we can see that [esp+8] is the only value that appears
to change. We can assume that it holds the value for the count parameter at the start
of the function:

210

Unlocked

~7 00NN ANE
LES P YouUvULauUo

Cesp+10] 01054830 cquake3 urt.010543C0

Lesp+8] 0000048/

If we look at the stack panel at the bottom right, we can see how this information is
represented on the stack. By default, the top of the stack (esp) will always appear at the
top of the window:

05 591N
QOOoHiong

00001105

OLOSAECO | quake3-urt.OLOSAZCO
LARILEIED)

USRS

L JCOA1I 6LD | "* IHightmapl)

FO05UCC LY

OO0N1406
STR 1) L
JCOLLCLO

L 3COTFEED | "*Tightmapl3™

r'.'.w'lf.:;".r-.f. e
UNTEGEN ! "5 T ienhimand3”

Defauk

Continue stepping through the function and then step into the jump to our code cave.
After the pushad instruction in our code cave, examine the stack again:

At this point, we can see that the count parameter is at esp+0x10. We can reference
this value in our code cave to retrieve the current count value of the element being
rendered. In the first asm block, after the pushad instruction, we can take the value of
esp+0x10 and store it in a local variable:

DWORD count = 0;
__asm {
pushad
mov eax, dword ptr ds : [esp + 0x10]
mov count, eax
popad
pushad

212

We now have a local variable count that will hold the value of count passed to
glDrawElements. We can then compare this value to a baseline and only disable
depth testing if we exceed that baseline. If we don't exceed it, we will re-enable depth
testing. The value for GL_LEQUAL (0x203) can be found in the same way that we
found the value for GL_ALWAYS. For now, we will use 500 as a baseline value:

if (count > 500) {
(*glDepthFunc)(0x207);

3

else {
(*glDepthFunc)(0x203);

3

If we build and inject this, we can see that our view is much cleaner now, and only
certain elements appear through walls:

213

5.3.12 Clipping Planes

Now we are filtering many elements, but we've encountered the problem that no
player models are appearing. Instead, we can only see their weapons and blood effects
through walls:

If we enable third-person view, our player model is also invisible. The only place our
player model will appear is if we turn on no-clip and fly out-of-bounds. This is most
likely due to our player model being drawn first, when the scene is being rendered,
and then other elements of the level drawn on top of it. When we disable depth
testing, these entities are all drawn on top of the player.

draw_player(Q);
draw_guns();
draw_doors(Q);
draw_level_walls(Q);

214

To force players to be drawn above these elements, we can use the glDepthRange
function. This function sets the near and far clipping planes for the scene. Clipping
planes are planes that extend across the game scene and clip (or remove) any entities
behind them. By setting these values to be equal to 0, the planes will intersect, causing
all elements to be drawn on the same plane and "fight" for rendering space. This will
result in some flickering, but the player models will appear through walls.

We can create a function pointer for this function identically to the approach we used
for glDepthFunc. The only alterations we need to make are in the parameters:

void (__stdcall* glDepthRange)(double, double) = NULL;

glDepthRange = (void(__stdcall*)(double, double))GetProcAddress(openGLHandle,
“glDepthRange");

We can then call this function in the same location that we change the depth function.
The default values for these planes are (0,1), which we will reset if the count is too low.

if (count > 500) {
(*glDepthRange) (0.0, 0.0);
(*glDepthFunc)(0x207);

ks

else {
(*glDepthRange) (0.0, 1.0);
(*glDepthFunc)(0x203);

ks

With this, player models will now appear through walls, indicating that our wallhack is
successful:

215

https://www.khronos.org/registry/OpenGL-Refpages/gl4/html/glDepthRange.xhtml

The full code for this chapter is available in Appendix A.

216

5.4 Chams (OpenGlL)

5.4.1 Target

Our target for this chapter will be Urban Terror 4.3.4.

5.4.2 |dentify

Our goal in this chapter is to create a chams hack, which is a type of hack that colors all
players a bright color. We can accomplish this by hooking the game’s graphics library
and modifying its code to make all player models render with a bright color instead of
a texture.

5.4.3 Understand

When entities are rendered to the screen, they are just filled polygons. To make these
entities have visuals (such as eyes, camouflage, or hair), textures have to be applied to
the polygons. These textures are specially formatted images, which wrap around the
entity when applied to it. For example, the oil barrel texture from Urban Terror looks
like:

217

When this is applied to the circular barrel model, it wraps around it. This is how 2D
textures are applied to 3D models.

To create a chams hack, we will modify this rendering flow. After the polygons have
been rendered, we will disable textures in OpenGL. When textures are disabled,
OpenGL will fall back to using the lighting (or color) array specified by the game. If we
disable that as well, OpenGL will fall back to using whatever color was last specified by
a call to glColor. If we set our own color and then render the entity, we can make the
entity appear as a bright solid color, such as red.

5.4.4 Texture Function Pointers

To make our development easier, we will build off the OpenGL wallhack we created in
the previous chapter. For that, we created function pointers for two functions related to
depth testing: glDepthFunc and glDepthRange. To disable and enable textures, we
will need to create function pointers to four additional functions:

+ glEnable

« glDisable

+ glEnableClientState
» glDisableClientState

We plan to use glEnable and glDisable to enable and disable GL_COLOR_MATERIAL.
In addition, we will need to call glEnableClientState and glDisableClientState to
enable and disable GL_COLOR_ARRAY and GL_TEXTURE_COORD_ARRAY. We will
enable and disable all these elements to ensure that OpenGL falls back to a mode
where we can set the color.

To set the color after we have done those steps, we will also need to create a function
pointer to glColor. glColor has many forms that allow you to pass in different type of
parameters. Any of these functions will work, but for our hack, we will use glColor4f,
the version of glColor that takes 4 floats (values that allow decimals): one for red,
green, blue, and alpha. The alpha float is responsible for controlling the opacity of the
color.

We can declare these function pointers right below the pointers for glDepthFunc and
glDepthRange:

void(__stdcall* glColor4f)(float, float, float, float) = NULL;
void(__stdcall* glEnable)(unsigned int) = NULL;

218

void(__stdcall* glDisable)(unsigned int) = NULL;
void(__stdcall* glEnableClientState)(unsigned int) = NULL;
void(__stdcall* glDisableClientState)(unsigned int) = NULL;

glColordf = (void(__stdcall*)(float, float, float,
float))GetProcAddress(openGLHandle, "glColor4f");

glEnable = (void(__stdcall*)(unsigned int))GetProcAddress(openGLHandle,
"glEnable");

glDisable = (void(__stdcall*)(unsigned int))GetProcAddress(openGLHandle,
"glDisable™);

glEnableClientState = (void(__stdcall*)(unsigned
int))GetProcAddress(openGLHandle, "glEnableClientState");
glDisable(ClientState = (void(__stdcall*)(unsigned
int))GetProcAddress(openGLHandle, “glDisableClientState");

5.4.5 glDrawElements Code Cave

In our code cave, we already have the logic built out to display models through walls if
they have a count greater than 500. We will expand on this code to also color them.
First, we will disable GL_COLOR_ARRAY and GL_TEXTURE_COORD_ARRAY. The
game uses these client states to let OpenGL know that the game wants to map
textures and color arrays (for lighting) to polygons. To apply a static color to a model,
we need to tell OpenGL that we are not using these features. Since these are
considered client states, we will use glDisableClientState to disable them. We can get
their values from gl.h:

if (count > 500) {

(*glDisableClientState)(0x8078);
(*glDisableClientState)(0x8076);

Next, we will enable GL_COLOR_MATERIAL and set our color to red. glColor4f takes
a value between 0 and 1 for all values. If we want a red color, we will set the red value
to 1 and the alpha to 1. However, if we leave green and blue at O, our ending red color
will be dark and muted. To make it vibrant, we will set these values to 0.6. Adding an f
on the end of a number in C++ will cause the number to be interpreted as a float:

(*glEnable)(@x0B57);
(*glColor4af)(l.0f, @0.6f, 0.6f, 1.01);

219

https://www.khronos.org/registry/OpenGL/api/GLES/1.0/gl.h

Finally, just like with our wallhack, we will disable this coloring when the model's count
is less than 500. To do this, we will enable GL_COLOR_ARRAY and
GL_TEXTURE_COORD_ARRAY and then disable GL_COLOR_MATERIAL. Finally, we
will make another call to glColor, this time setting the color to a pure white. This is not
strictly necessary for Urban Terror, but for some games, this will prevent the colors of
effects from getting corrupted if they use the previously set color:

(*glEnableClientState)(0x8078);
(*glEnableClientState)(0x8076);
(*glDisable)(0x@B57);
(*glColor4f)(l.0f, 1.0f, 1.0f, 1.0f);

With this done, you can inject the DLL into the game, and you will see all the models
appearing through walls with a bright red color:

The full source code for this hack is available in Appendix A.

220

5.5 Triggerbot

5.5.1 Target

Our target for this chapter will be the game Assault Cube 1.2.0.2, since it has an easy
way to create bots and disable their movement. However, this same technique will
work on any FPS that displays a player's name when you hover over a player.

5.5.2 |dentify

Our goal in this chapter is to create a triggerbot, a type of hack that automatically fires
whenever we look at another player.

5.5.3 DLL Injection

While the following chapters can be done using the Applnit technique discussed in
previous chapters, using a DLL injector will vastly speed up development time. From
this point on, the rest of the book will assume that you are using an injector. Creating a
DLL injector is discussed in Chapter 7.1. General-purpose DLL injectors can also be
found online.

5.5.4 Understand

To write a triggerbot, we need to calculate where our player is looking and identify if
we are looking at another player. Luckily for us, most games already have this
functionality in their code to display a nametag when you hover over a player or
change the crosshair to a different color. Assault Cube displays a nametag, as seen in
the bottom left-hand corner:

221

https://assault.cubers.net/

LR IURIS T

If we locate the code responsible for displaying this text, we can hook it and write
custom code to send a mouse press.

5.5.5 Locating Code

The method for locating the responsible code will depend on how the game reacts to
hovering over a player. In general, games will react in two different ways:

1. The crosshair will change, either in size or color.
2. The player's name we are looking at will be displayed somewhere on the screen.

In games with the first reaction, we will have to search for one value while not looking

at a player and then filter for a different value while looking at a player. After enough
filtering, a value will remain that will generally be 0 when not looking at a player, and 1

222

(or a value linked to the player's location in the entity list) when looking at a player. You
can then set a breakpoint on this memory address and see what code writes to it.

Other games, like Assault Cube, will display a string that represents the player's name.
In these cases, we can locate a player's name in memory and then set a breakpoint on
access on the name. When we hover over the player, this breakpoint should pop at the
code responsible for determining if we are looking at a player.

First, make sure the nametags option is enabled in the HUD settings. Then, start a new
single-player deathmatch game with 8 bots. When the game starts, hit the “~" key to
open the console and run the command idlebots 1. This command will disable bots
from moving and shooting, making it easier to search for the information we want. In
games that do not have a way to disable bot movement, you can use Cheat Engine's
Enable Speedhack feature to slow down the game and allow you to search easier:

€ ChestEngne 7.1 —
Fik Ecit Ttbe DID Hdp
—_] NN AR-ac rlicat pye
= o I I
aund:0
A\ddreas Valu:z Previous Fist Scan -
S=llingy>
Valiw
Hex |
Scan Tvpo Esact Ve v [Lus faevula
Value Typas 4 Byles - L Not
Memary Scan Opuons e
al Enable Spoadhack

$oart 000C02C000002000

Sep .

1| writable (w] txecutable

L CopyOrWike

¢ . .'Uk, "o

[“ITastScon 4 ;

Last Digit:
LI Pounes thee qganime wihi s s_anmingg
Memory View @ AdC Addiess Manualy
Acive Desarpiicn Addiess Type Value

223

https://assault.cubers.net/docs/reference.html#identifier_idlebots

With the game started, find a particular bot and note its name down. Search in Cheat
Engine for this name, which should return about 10 results:

Found: 7
Aldress Valu= Prev_ous
ac client.exel FRT/H Staropramen

ac_cllent.exe+101C38 Staropramen

(291909
ONFCEBO7
aRO77C75
0BO8DS12
ORO973NR

Staropramen
Staropramen
Staropramen
Staropramen

Staropramen

Next, look away from the bot so that its nametag is no longer displayed. For each
address identified, use Cheat Engine's Find out what accesses this address option,

which will attach a debugger to the process to determine what code is touching the

memory:
Address Valie revious New Scan Next Scan
Ac_clisntiexetlOlC < Add selected addiesses to the addresslist
EFSS Y
R . Change valuz of selected addresses Ctr+E
OAFCERB)?
03077275 " Change valus of selected addreswes back to praviousisaved value Ctrl+Alt+E
0308DS12 M Browse this memory region Ctri+B
0309732& | Disassemble this MEMory region Ctl+D
X Remacve selected address Ctri+Del
() Copyselected addresses CtrsC
" Show previous value column
&4 Find out what accesses this address Ctrl4F5
INd ou' Wil T Ctrl+F6
Prefesences
Hexadecima
® Defadlt
an

Undo S

ode
F-1
ase

rmar

224

For each address, look at the bot again so that the nametag displays. We are looking
for an address which has a ton of accesses only when looking at the bot. After going
through several of the addresses, you should find one that is always accessed only

when looking at a bot:

F24=r8Ns
CASCEEO?Y
CE0ICTS
coOopsae

fANIINe

Memary View

Active Dascriptinn

e client.exs!l

C123¢

Valie Prezious MNew Saan Nt sean
Jdetaccpranen Velee
— staloplamen

Scan Fype Search for tex

Vaua Fypa String

Merncey Saan Optone

All

Y

£ Mhe following oncodes accosead 005D1€33

. Ivstrarton

43, COA0A0BT - 33 0C 02 - mov [edr+ond.d

Address

« [] Codepage

I

Sattings

LIuTF15

';1 Lase sendiwe

_J Urrandomizer

L] Enable Spoadhack

T RS Y

With this code found, we can close Cheat Engine and start working on reversing the

responsible code.

5.5.6 Locating Code Cave

Open up x64dbg and attach it to Assault Cube. In Assault Cube, make sure that the
nametag is still displaying. Navigate to the address we found in Cheat Engine and
place a breakpoint on the code. It should pop immediately:

225

You will notice that we are inside a loop that is loading the player's name into a buffer.
We see that this loop is only entered if the je at @x@040ADA6 does not jump. The
condition for this jump is the test edi, edi instruction. Testing a register against itself
compares its value to 0. From this, we can assume that the nametag is only displayed if
edi is not 0. We can confirm this behavior by setting a breakpoint on the test edi, edi
instruction. When looking at a player, edi will have a value:

However, if we are not looking at a player, edi will hold the value O:

226

Looking at the call above, we can see that edi gets its value from eax, which is the
return value from the call:

Since this call is 5 bytes, we will overwrite this call with a code cave to our own code.

5.5.7 Writing Code Cave

The logic for our code cave will be simple. First, we will execute the call we hooked.
Then, we will read the value of eax into a variable. After that, we will read the value of
the variable. If we are looking at a player, we will use the SendInput API to send a left
mouse down event to the game. Otherwise, we will send a left mouse up event to the
game. We need to use this approach since SendInput sets a key's state permanently. If
we do not send a left mouse up event, the mouse button will act as if it is held down.

Like we discussed above, we will hook the call at @2x@04@AD9D. We will do this in an
identical manner to previous chapters:

227

https://docs.microsoft.com/en-us/windows/win32/api/winuser/nf-winuser-sendinput

unsigned char* hook_location = (unsigned char*)0x0040AD9D;

VirtualProtect((void*)hook_location, 5, PAGE_EXECUTE_READWRITE,
&old_protect);

*hook_location = OxE9;

(DWORD)(hook_location + 1) = (DWORD)&codecave - ((DWORD)hook_location + 5);

In our code cave, we will first start by calling the method that we overwrote and then
moving its return value (eax) into a variable that we declare:

DWORD ori_call_address = 0x4607C0;
DWORD edi_value = 0;

__declspec(naked) void codecave() {
__asm {
call ori_call_address
pushad
mov edi_value, eax

Next, we will check the value of our edi_value variable to determine if we should send
a left mouse down or mouse up event:

if (edi_value '= 0) {
//looking at player

}
else {

//not looking at player
}

SendInput takes an array of input events, which allows you to send multiple events.
This can be useful if we want to do multiple actions at once, such as firing and then
reloading. In this chapter, we will only send one input, which is the mouse down or
mouse up event:

INPUT input = { 0 };

if (edi_value '= @) {
input.type = INPUT_MOUSE;
input.mi.dwFlags = MOUSEEVENTF_LEFTDOWN;
SendInput(l, &input, sizeof(INPUT));

228

ks

else {
input.type = INPUT_MOUSE;
input.mi.dwFlags = MOUSEEVENTF_LEFTUP;
SendInput(l, &input, sizeof(INPUT));

Just like in previous chapters, we want to restore the registers and jump back to the
original code:

DWORD ori_jump_address = 0xQ04QADAZ2;
_asm {

popad

jmp ori_jump_address

If you are using the DLL injector from Chapter 7.1, we can make some small
modifications to use it for this target:

const char *dll_path = "C:\\Users\\IEUser\\source\\repos\\triggerbot\\Debug\
\triggerbot.dll";

if (strcmp((const char*)pe32.szExeFile, (const char*)L"ac_client.exe") == 0)

{

With those changes, we can inject the DLL into Assault Cube and hover over a player.
When we pass over a player, we will automatically fire.

The full code for this chapter is available in Appendix A.

229

5.6 Aimbot

5.6.1 larget

Our target for this chapter will be Assault Cube 1.2.0.2.

5.6.2 |dentify

Our goal in this chapter is to create an aimbot, a type of hack that automatically aims at
other players.

5.6.3 Understand

The core fundamentals of an aimbot rely on trigonometry. Take the following scene
from our target game, Assault Cube:

230

Focusing on just our in-game player and the enemy, this scene can be mapped onto a
3D graph that looks like:

To simplify, we can convert this into a 2D graph by fixing our perspective and
eliminating one of the axes. By choosing a top-down perspective, we can eliminate the
Z axis. The resulting graph would look like:

231

Every first-person or third-person shooter allows the player to look left and right to aim.
For example, in our first screenshot, our player is looking straight ahead. On our 2D
graph, this would look like:

If we are looking at an enemy, like so:

rime 'ama Ilﬂ:” ¢ minutes

’;;"j-: 2 QD 4.0

Then our graph would change to look like:

Games represent this left and right value as an angle. They can represent this angle in
multiple ways, such as a vector, a radian, or a degree. However, for our current
example, we will assume the view angle is represented in degrees. To create an
aimbot, we need to find a way to calculate this angle for an enemy. We can do this by
first creating a right triangle using our player's position and the enemy's position:

If we knew the value of 8, we could use the tangent operation to determine the ratio
between the opposite (7 above) and adjacent (5 above) sides. In our case, we have the

233

opposite and adjacent sides and want to determine 0. To do this, we can calculate the
inverse tangent or arctangent. The arctangent will then represent the angle we need to
set our player's aim to aim at an enemy.

However, this will only correctly aim to the left and right. To aim up and down, we will
need to do a similar operation for the Y and Z axes.

Before we can do any of this, though, we will need to locate where the game stores
enemies. Then, we will need to locate where the game stores our player. Finally, we will
need to reverse the player structure to locate the X, Y, and Z members in the structure,
as well as the view angle members.

5.6.4 Locating Enemies

To locate enemies in the game, first create a game with 8 bots and set them to idle.
Typically, games will store enemies in a list and hold a static location to this list. In the
previous chapter, we found the game code responsible for displaying a player's name
when you hovered over that player. To do this, the game must have code inside that
function that iterates over the enemies in the game and retrieves their names. This was
the code we located in the last chapter:

234

When reversing this code, we determined that the call to 9x4607c0@ at 0x40ad9d was
responsible for loading the current player looked at into eax. If we step into this call,
we can see that a call at the end is responsible for getting this value:

Stepping into this call, we can see that it is rather long with many loops and
conditionals. As we step through the code, you will notice the following line:

235

From this, we can determine two things. The first is that [0x50f500] will hold the
current number of players in the game. We will need this value later when we are
iterating through all the players to aim at them. The second is that eax is being
compared to this value, with a jmp below that executes if eax is less than this value.
This means that we are most likely in code responsible for looping through all the
active players. A few lines below, you will notice the following code:

:l’]Hl.ll'l-‘ orr
* oder [eax], esi
I l"ll\l'l'.'l" ptrre da: [S0CS5007
m duord plr sx- ey
ienl A6078%
:l’]Hl.ll'l.‘ orr
,dmword our

>1,es

2GS

This code is loading a static memory address into ecx and then retrieving a new
address based on that address's value combined with an offset from eax. This new
value is then loaded into esi. The first time this loop occurs, the value of esi is O:

236

However, if we continue and execute the loop again, esi holds a different value:

If we examine esi's value in the dump, we can see that it is always near an address that
holds a player's name:

This is most likely the enemy player's structure in memory, as one of the values that will
be held in this structure is the player's name. For now, we have identified that the list of
enemies is held at [0x50f4f8], with each enemy being at [[0x50f4f8] + 4,8,C...]. Once

we find our player's structure, we will reverse exactly how the player structure is laid out

in memory.

237

5.6.5 Locating Our Player

Next, we need to locate where our own player is stored in memory. Since we can never
look at ourselves, we need to find our player in a different manner. Many games have a
way to print your current position and view angle to the screen. In Assault Cube, this
can be done with dbgpos 1. When turned on with showstats 1, the output looks like:

If your target does not have this feature, you will instead have to search for unknown
values and then filter while carefully moving your mouse or player in a single direction.
In Assault Cube, it looks like our view angle is represented by yaw (left and right) and
pitch (up and down), with both values in degrees. We will need to keep this model in
mind for later. For now, we know that our player structure will have to contain these
values. In Cheat Engine, we can search for our yaw in memory and then see what
accesses the address:

238

Me Cdit Tobke DID Iklp

A M

000D 1CAS-ac_diient.cox

g LA LA S e
pddress Value Previovs Mew Scan No«<t Szan
40,83328€2% 40.8333862%

Vabe
s0LEs

Scan Type Bxact Vibue
Vauz Type “loax
[“1Compere w fitst scan
Nerrowy Scan Options
ALl

dact

c The oluwing opuades mite Lo 00Z3A26C

“w 0045C07C - D9 D40

fatp dword pir [eck +40]

Memory View

Active Desaiption

J0L5CEED - DOCR - hoh «2(3)

JOA5SCEEF - DE 414D - [eddd dword o 'exe4C)

JOAS5CEFY DL 594) fatp dware phr [oex 4D <«

JOASCEFS - 2905 6C015°0) - cmp ‘az_dentexes " 101€C cax
JUDLEFE - UF24 (U - see al

Advarcec Options

Son'n‘;c{

v L Lus formula

Not

B Fourdad (defaclt)
_ Fourded (osteome)
Truncated

Simple values only

poch

Rasplace
Show dizassemoler
Add to the codalist

Moee infcrmation
Sres Sy e L.")

=

“abide Extres

The fstp instruction copies a floating point number into the address specified. In this
case, that address is based on ecx. If we examine this instruction in x64dbg and then

view several lines above, we can find where ecx is being set:

239

If we examine the memory pointed to by [0x509b74], we see a structure identical to
what we observed with enemies, with our player's name appearing near this address:

This most likely represents our player's structure. Since we have more control over the
values in this structure, we can begin reversing it.

5.6.6 Reversing Player Structure

We know that the game must store data about each player in memory. This data will
generally be in a continuous section of memory. In C or C++, this would be
represented as a structure or a class. For example, a game might define the Player
structure like:

struct Player {
float x;
float y;
float z;
float yaw;
float pitch;
char model_texture_path[1287;
char name[128];
bool alive;

When viewed in x64dbg, this structure will appear as a long section of memory since
data has no concept of its type. To identify this data, we will need to reverse the
structure. x64dbg allows you to modify the data representation in the dump. The
default view is hex with ASCII representation. We will start by trying to find the values
for our position, which is represented by three float values. We can right-click and
choose Float to have the dump data displayed in this format:

241

Waleh DWORD

wmp & W pup @ viatdh i

Alocate Memory

G lo

Hex

Ted

Lnteger
Misal (32-hd)
Laowble (6= bit)

Mitaasnhly L oeng dhesoatsles (RO-El)

oL Ao Qo No
LU

Upon doing so, several values should jump out immediately, which represent our X, Y,
and Z:

Similarly, our yaw and pitch are easily observable as well:

242

5.6.7 Changing our View Angle

At this point, we have all the offsets we need to start creating our aimbot. The first step
is making a DLL that will continuously spin our player in a circle. We want to start with
this to ensure that we have correctly located our player and reversed the player
structure correctly. Like we have done previously, we will start by creating a thread that
will run inside the game's process:

#include <Windows.h>

void injected_thread() {
while (true) {
//aimbot code
Sleep(l);

}

BOOL WINAPI D11Main(HINSTANCE hinstDLL, DWORD fdwReason, LPVOID 1pvReserved)
{
if (fdwReason == DLL_PROCESS_ATTACH) {
CreateThread(NULL, @, (LPTHREAD_START_ROUTINE)injected_thread,
NULL, @, NULL);
ks

return true;

We have covered this code several times in previous chapters. Next, we need to define
our Player structure above our injected_thread function:

243

struct Player {

}

From our work before, we know that our X, Y, and Z members are at the base+4,
base+8, and base+C, respectively. We don't know what the first 4 bytes represent, but
we luckily don't need to. Instead, we can create a placeholder member that is an array
of characters. We choose characters since they are 1 byte long. We can then create
float members for our X, Y, and Z values:

struct Player {
char unknownl[4];
float x;
float y;
float z;

Next, we need to add in our yaw and pitch members. If we look at the memory, we see
that Z ends at @xc3a230@ and yaw begins at @xc3a260. Like the placeholder above, we
will use a char member to add @x30@ bytes of padding before adding our yaw and
pitch:

struct Player {
char unknownl[4];
float x;
float y;
float z;
char unknown2[0x30];
float yaw;
float pitch;

We will then create a pointer from this structure that we will use to map the game's
memory into later:

Player *player = NULL

244

With our structure created, we can now map the game's memory of the player to our
structure. First, we will create a pointer to @x509b74 in our while loop, since this
represents the base address of our player:

DWORD *player_offset = (DWORD*)(@x509B74);

Next, we will dereference this pointer to get the value of the player's base address. We
will then map the dereferenced address to our Player structure pointer. This will store
the values we observed in the dump into this structure so that we can reference them
in our code.

player = (Player*)(*player_offset);

Finally, we will increase the yaw member in a loop to cause our player to spin in a
circle:

player->yaw++;

From here, we can build and inject this DLL. Our player will now spin around in a circle,
showing that we have correctly reversed the player structure.

5.6.8 Aiming Left and Right

With all of this in place, we can create the first version of our aimbot. This version will
aim left and right at a single opponent. When testing this out, make sure to create a
two-player game, with you and a single bot. This will let you nail down the math.

First, we will use the same approach as before to map the first enemy into a Player
structure. When reversing the code, we identified that the first enemy was at +4:

DWORD* enemy_list = (DWORD*)(@x50F4F8);
DWORD* enemy_offset = (DWORD*)(*enemy_list + 4);
Player* enemy = (Player*)(*enemy_offset);

One issue with our previous code was that we would crash if we were not in a game.
That's because we were accessing memory that wasn't valid. To prevent this, we will
check to make sure both of our pointers are valid before continuing:

245

if (player != NULL && enemy != NULL) {

At the beginning of this chapter, we had the following graph:

In this graph, we knew the opposite and adjacent distances based on the enemy's
position. However, as we have seen when reversing, our position is never (0, 0).
Instead, the graph would look more like:

opposite

(30, 20) adjacent

246

If we attempt to use the enemy's position, our calculations will be incorrect. Instead, we
need to determine these values by subtracting the enemy's position from the player's
position. This will give us values that will act as if the player is always at (0, 0), or the
absolute position (abspos) between our player and the enemy:

enemy->x - player->x;
enemy->y - player->y;

float abspos_x
float abspos_y

Next, we can calculate the arctangent using the atan2f function. We use this function
as opposed to atanf, as it takes care of the case in which abspos_y is less than 0. Since
the inverse tangent is an unsigned operation (i.e., it doesn't have a concept of positive
or negative), our aimbot would aim in the opposite direction if the enemy was directly
behind us. We could manually check for this by checking abspos_y, but atan2f takes
care of this calculation for us:

#include <math.h>

float azimuth_xy = atan2f(abspos_y, abspos_x);

The atan2f function produces a radian value. When reversing, we saw that the game
represents our yaw as a degree value. To convert the radian to a degree value, we can
multiply the radian by (180 / n):

#define M_PI 3.14159265358979323846

float yaw = (float)(azimuth_xy * (180.0 / M_PI));

Finally, we can set our player's yaw to this value:

player->yaw = yaw;

If you inject this code into the game, you will notice that you aim close to the player,
but always a consistent amount of pixels to the left or right, depending on where you
are standing. This is because in our graphing model, we assumed that 0° was facing
straight ahead. However, if you join a game without the hack, you will notice your
player's starting yaw is 90°. To compensate for this, we can simply add 90 to our
calculated yaw:

247

player->yaw = yaw + 90;

With this change, we can run around the map and constantly stay locked on a player.
However, if we jump up and down or go up an incline, we will be aiming above or
below the enemy. Our next step is to set our pitch (or up and down) value correctly.

5.6.9 Aiming Up and Down

When we first approached this problem, we quickly set our perspective as top-down to
eliminate the Z axis. To calculate our up and down angle, we will now fix our
perspective as right-left (i.e., on the right of the player, looking directly at the player's
right side). The most important thing to note in our new graph below is the different
axis values:

We can use a similar approach to the left and right angle to calculate the up and down
angle. First, we will get the absolute distance:

float abspos_z = enemy->z - player->z;

Then, like before, we will calculate the inverse tangent. Unlike the yaw, our initial pitch
starts at 0, so we don't need to add any value to it:

248

float azimuth_z = atan2f(abspos_z, abspos_y);
player->pitch = (float)(azimuth_z * (180.0 / M_PI));

If you inject this code, it will appear to initially work. However, when you get within
arm's distance of an enemy, your player will suddenly look straight up or straight down.
This is due to the game having very limited Z values. For example, most maps in the
game have Z values between 0 and 6. When the value of Y gets too small, the resulting
equation ends up being skewed. Imagine the case where the difference in Z values was
3 but the Y value difference was 1, or arctan(3 / 1). This resolves to 75°, which is
effectively straight up in the air when it comes to pitch.

To account for this behavior, we will look at the value of Y and ensure that it is
reasonably large. If it's not, we will use X. This is not perfect, but it will help alleviate
some of the issues. We will also ensure that the value is positive, regardless:

if (abspos_y < @) {
abspos_y *= -1;
ks
if (abspos_y < 5) {
if (abspos_x < @) {
abspos_x *= -1;
}

abspos_y = abspos_x;

Now you will notice that you can run up directly to the enemy and your aim will not
jump in the air. Our aimbot is now working for a single enemy.

5.6.10 Multiple Enemies

With this foundation down, we can modify our aimbot to work with multiple enemies.
To do this, we will change the code to iterate through the enemy list, pick an enemy to
aim at, and set our yaw and pitch to aim at them. To pick the enemy, we will choose to
always select the enemy closest to us. This will not always be the best case. For
example, if one enemy is down a hall and one enemy is behind a wall next to us, our
aimbot will always pick the enemy behind the wall. However, for the purpose of this
chapter, this method is the easiest to implement.

To find the enemy closest to us, we will calculate the Euclidean distance between our
player and the enemy. The lower the value, the closer the enemy is to us:

249

float euclidean_distance(float x, float y) {
return sqrtf((x * x) + (y * y));
ks

Since we need to iterate over a list of enemies, we will create a variable to hold the
closest enemy distance, as well as their associated yaw and pitch values:

while (true) {
DWORD* player_offset = (DWORD*)(@x509B74);
player = (Player*)(*player_offset);

float closest_player = -1.0f;
float closest_yaw = 0.0f;
float closest_pitch = 0.0f;

At the beginning of this chapter, we determined the address that held the current
number of players in the game. We can finally use that value now:

int* current_players = (int*)(@x50F500);

We can now iterate over all the enemies in the game. Unlike before, where we always
added 4, we will now add the current loop index multiplied by 4, identically to how the
game did it

for (int 1 = @; i < *current_players; i++) {
DWORD* enemy_list = (DWORD*)(@x50F4F8);
DWORD* enemy_offset = (DWORD*)(*enemy_list + (i*4));
Player* enemy = (Player*)(*enemy_offset);

We can then calculate the absolute positions like we did before. However, before
calculating the yaw or pitch, we will calculate the distance from our player to the enemy
and ensure that they are the closest enemy. If they are, we will then set the
closest_player value to their distance for future checks:

float temp_distance = euclidean_distance(abspos_x, abspos_y);
if (closest_player == -1.0f || temp_distance < closest_player) {
closest_player = temp_distance;

250

Next, instead of directly setting the player's yaw and pitch, we will store these in our
variables. Once we have iterated over all the enemies, we will set the player's yaw and
pitch. This ensures that we aren't constantly flickering through multiple enemies:

closest_yaw = yaw + 90;

closest_pitch = (float)(azimuth_z * (180.0 / M_PI));

player->yaw = closest_yaw;

player->pitch = closest_pitch;

Sleep(l);

We now have a working aimbot that will iterate through multiple enemies and aim at
the closest one correctly in the X and Y axis.

Finally, we can add a check to see if the enemy is alive, to ensure that we instantly
switch from a target when we shoot them. This value can be found by observing the
player structure for values that change when you are alive or dead. After killing yourself
several times, you will notice that one value is set to O when you are alive and 1 when
you are dead:

251

We can add this to our player structure, ensuring that we correctly offset it:

float yaw;

float pitch;

char unknown3[0x2fQ];
int dead;

+s

We can then check this value in our initial check to ensure that the player and enemy
are valid:

if (player != NULL &% enemy != NULL && !enemy->dead) {

The full code is available in Appendix A for comparison.

252

5.7 No Recoil

5.7.1 Target

Our target for this chapter will be Assault Cube 1.2.0.2.

5.7.2 ldentify

Our goal in this chapter is to create a no recoil hack, a type of hack that eliminates
recoil when firing. Recoil is defined as the automatic upward motion of your player's
view when firing a weapon.

5.7.3 Understand

When firing a weapon in an FPS, different effects are applied by most games:

* Recoil (up and down movement)
e Spread (crosshair widening, random distribution of shots)
e Pushback (player pushed in the opposite direction they are firing)

Our focus in this chapter is to remove recoil only.

In most games, these effects are applied consecutively after each shot is fired. Recoil
generally works by increasing the player's up and down view angle by adding a certain
value to it. Because view angles are usually floating point numbers, this operation will
typically take the following assembled form:

fld recoil_amount ; load recoil amount into st(@)
fadd st(@), players_y_view_angle ; add recoil_amount to view angle
fstp players_y_view_angle, st(@) ; store result in view angle

Unlike integers, float values must be pushed on a special register stack to be operated
on known as the FPU stack. However, like normal instructions, if this code is nop’d out,
recoil will not be applied to the player.

253

When firing a weapon, games execute several functions, including playing a sound,
displaying a firing animation, and decreasing the player's ammo. These functions are
often located near the function that applies recoil to the player's view. We can use
these functions to help locate the recoil code. We have multiple approaches that we
can use to locate this code. In this chapter, we will use the code responsible for
decreasing the player's ammo, as this value is easy to search for.

5.7.4 Locating Firing Function

Start a game of Assault Cube and use Cheat Engine to locate your current ammo
count, using the same approach discussed in Chapter 1.5. Once that is identified,
attach x64dbg to Assault Cube and set a hardware breakpoint on write on the
identified address. When you go back to Assault Cube and fire, the breakpoint should
pop at the following location:

We can see that this code is responsible for decreasing the ammo count. If we step out
of this code using execute until return/step, we see that the calling location is here:

254

Next, let's determine our context in the code. We want to determine if we are in the
code responsible only for setting the ammo count or if we are in the general firing
code. We can do this by setting a breakpoint on the call edx instruction. After that, we
can see that this code is called constantly, whether we are firing or not. This means that
we are too high-level and we will need to dig into this function.

If we step into the call after the breakpoint is triggered, we can see that the function
has several branches:

ds pT
¢ daard prre

If we step through the code, we can see that the jmp at @x46363A is not taken if we are
not firing:

If we change this to a jmp and go back in the game, we will notice that our player now
fires constantly, even if we are holding down the mouse button. This jmp appears to be

255

responsible for checking if the player is firing. If we follow this jmp, we can see that it
jumps past a return statement and to the following instruction:

3 s

When we set a breakpoint on this instruction, we see that this code is only called when
we are actively firing.

5.7.5 Locating Recoil

We have now found the beginning of the weapon firing code. We could also see that
one of the final instructions in the weapon firing code is responsible for decreasing the
ammo. Therefore, somewhere between these two instructions is the code responsible
for adding recoil.

While we could step through this code to identify the instruction, we can use a quicker
approach. We know that the recoil instruction must modify the player's yaw value. After
we hit our breakpoint on our weapon firing, if we then set a breakpoint on the yaw
value, we can continue execution and wait for the breakpoint to pop. This prevents us
from stepping through a large amount of code.

It's important that we only set the breakpoint on the yaw value after the firing code is
started. Assault Cube, like many other games, constantly writes to the yaw value. If we
just set a breakpoint on it without being in the firing code, we will end up in another
section of code.

256

We can locate the address of the yaw value using the same approach discussed in the
previous chapter or by searching for it in Cheat Engine. After that, set a breakpoint on
the start of the firing code at @x46366C. Then, fire a single shot so the breakpoint pops.
When it does, set a breakpoint on write on the address of the yaw value. Continue
execution and the write breakpoint should pop at the following code:

JOTTEL TN 7SR & P N 5

(e 3TuAal Pty

We can see that this code matches the pattern we expected. In this particular code,
dword ptr ds:[ebx+0x44] is responsible for holding the player's yaw value. The recail
value is held on the top of the FPU stack, which is pointed to by stO0.

The operation to calculate recoil appears to be composed of several instructions. While
we could investigate the exact way in which the recoil is set, we can skip that process
to make a no recoil hack and simply prevent the recoil value from being placed in the
player's yaw value.

The fstp instruction is responsible for popping the top value off the FPU stack into the
provided address. Since we do not want to corrupt the stack, we do not want to nop
this instruction, as the stack would then have an extra value on it. Instead, we will just

257

pop the value off the top of the stack into st0. Since st0 is then set in the next
instruction, this will result in the value effectively disappearing:

TC0) ,eard prr s [enndl]

With this change made, you will notice that you no longer have any recoil in the game.

5.7.6 Changing Recaoil

Finally, we can write a DLL to make this change automatically. Since this hack only
requires us to change bytes at an instruction, we can use the same template we
covered in Chapter 4.2. For this hack, we will change the code for editing the bytes at
@x45BAAD to the identical values we observed in x64dbg:

#include <Windows.h>
unsigned char new_bytes[3] = { 0xDD, ©0xD8, 0x90 };

BOOL WINAPI D11Main(HINSTANCE hinstDLL, DWORD fdwReason, LPVOID 1pvReserved)

{
DWORD old_protect;

unsigned char* hook_location = (unsigned char*)@x45BAAD;

if (fdwReason == DLL_PROCESS_ATTACH) {
VirtualProtect((void*)hook_location, 3, PAGE_EXECUTE_READWRITE,
&old_protect);
for (int i = 0; i < sizeof(new_bytes); i++) {

258

*(hook_location + i) = new_bytes[i];

}

return true;

The code for this hack is also available in Appendix A.

259

5.8 Radar Hack

5.8.1 larget

Our target for this chapter will be Assault Cube 1.2.0.2.

5.8.2 |dentify

Our goal in this chapter is to create a radar hack, a type of hack that displays both
enemies and friendly players on the radar.

260

5.8.3 Understand

Many FPS games have a radar that will display an icon for each player on top of a
scaled-down version of the current map. When playing in a game with teams, these
radars will only show the players on the same team as the active player. In Chapter 5.6,
we discovered the location of the list of players in the game. The code for most games
will iterate over this list when drawing a player’s icon on the radar, in a similar manner
to the following block:

void draw_radar() {
for(int i = 0; i < max_players; i++) {
if(player_list[i]->team == current_player->team) {
//draw on radar

}

If we locate this code, we can change the if conditional to always draw the player on
the radar regardless of the team. To locate the code, we will first need to identify the
team member in our player structure. Then, we can set a breakpoint on access to
identify where this member is accessed in code.

5.8.4 Locate Player's Team

We can use two approaches to locate the player's team in the player structure:

1. Use Cheat Engine and search for an Unknown initial value. Then, alternate
between teams and search for Changed value.

2. Use x64dbg and locate the player's structure in a dump. Then, alternate
between teams and search for a member that changes.

We have covered both of these approaches in past chapters. Using the techniques
discussed previously, you should be able to identify a member that alternates between
0 and 1 depending on your team. This member is relatively close to the member we
identified previously that held whether the player was alive or not.

261

5.8.5 Locate Radar Function

We know that the radar function must access the player's team. Therefore, we can
place a breakpoint on access on the team member we just identified. Immediately, the
breakpoint should pop. However, if you continue execution several times, you should
see that the breakpoint pops in completely different sections of code. This is most
likely because several sections of code access this member. Our next step is identifying
the section of code responsible for drawing the radar.

We can assume a few things about the code we are looking for, based on the pseudo
code we described above:

1. It will have a ecmp (or test) instruction followed by a conditional jump (je, jne, jg,
etc.).

2. It will either call a function or have a fair amount of code, due to the many
operations involved.

3. It will most likely make use of the floating point operations (fld, fstp) to position
the icon on the radar.

We can use these features to help figure out which location we care about in the code.

Because we are interrupting program execution, the breakpoints will not pop in a
consistent manner. In this chapter, we will examine each piece of code in the order they
were encountered when writing the chapter. In your environment, the order of pops will
most likely be different.

The first pop occurs at the following code:

RLCAKEAEE IR97 20030000
183z, 75 10

STCECEE

This initially looks like it checks off several of the conditions we care about. However, if
we nop the jne instruction at @x415322, we notice that there is no change in the game.
If you explore the call at @x415326, you should see the following code:

262

L)

vies
SN

T Ub L

From this string constant, we can assume that this code has something to do with
drawing the voice chat (or communication) symbols on the radar. Now we will continue
on to the next location:

jon

0SE 82200000 CO

1 ACSESQOD e yOr s client, 004097 25
19 rc_rclicep deord ptr ds:
NECY ronv ooy . eanov etx.dword ptr

SIIs OO SJOn S
' "o

For our immediate reversing purpose, testing a register against itself is the same as
comparing the register to 0. Here, we see that the code executes a branch if the
player's team is set to O, or the CLA team. The radar drawing operation should execute
according to the value stored in the player's structure, not a static value. Now we can
move on to the next location:

wcx dnord ptr ds
v, Unord pLr

74 03 Tt

DSOS 64E24E00 Md s1(0) ,daor

Examining this code, we see that it is doing an operation similar to the previous code.
After loading in the value of the player's team to ecx, the code compares this value to
1, or the RSVF team with the test cl, 1 instruction. The same logic applies here as it
does in the paragraph above, so let's examine the next location:

263

X C'.‘VJI"j. C’.I‘A
ward nrr s

4 prr 55|
an¥ award pTr
. tward ple

word ot
o

Like our first location, this looks like a promising candidate. The emp instruction at the
top compares our current player's team against eax, which appears to be loading the
same team offset from another data structure, potentially another player. We also see
several floating point operations that may be responsible for placing the icon on the
radar. Let's see what happens if we nop out the jne instruction:

. 3936 2¢€0300CC ¢ dword ptr
COL09FB3 Y

COZ09F-84

CO<09FB5

C0409FB5

C0409rB7
CO/09FBB

If you go back into Assault Cube, you should notice that you can now see every player
on the radar, including the ones that are not on your team. We have found our
responsible radar code.

5.8.6 Changing the Code

Since this hack only requires us to write bytes to a memory address, we can use the
same technique as discussed in Chapter 5.7:

#include <Windows.h>

unsigned char new_bytes[3] = { 0x90, 0x90, 0x90, 0x90, 0x90 },;

264

BOOL WINAPI D11Main(HINSTANCE hinstDLL, DWORD fdwReason, LPVOID 1pvReserved)
{

DWORD old_protect;

unsigned char* hook_location = (unsigned char*)@x409FB3;

if (fdwReason == DLL_PROCESS_ATTACH) {
VirtualProtect((void*)hook_location, 5, PAGE_EXECUTE_READWRITE,
&old_protect);
for (int i = 0; i < sizeof(new_bytes); i++) {
*Chook_location + i) = new_bytes[i];
ks
}

return true;

265

5.9 ESP

5.9.1 Target

Our target for this chapter will be Assault Cube 1.2.0.2.

5.9.2 ldentify

Our goal in this chapter is to create an ESP hack, a type of hack that displays player
information above their heads. This information includes the player's health, name, or
current weapon in use, and it is also displayed through walls.

5.9.3 Understand

In Chapter 5.6, we created an aimbot, which worked by calculating the angle between
our player and an enemy and then setting our player's current view angle to that
calculated angle. For games where a camera is always bound to our player's view, such
as an FPS, we can use these same angles to create an ESP.

Instead of setting our player's view angle, we will use the difference in these angles to
convert the enemy's 3D location in the world to a 2D position relative to our player's
view. We will then draw text at this position.

The method discussed in this chapter has several drawbacks, but it demonstrates the
basic concepts used in an ESP. A more accurate approach is to use the game’s
viewmatrix.

5.9.4 Viewports

Take the following scene from Assault Cube:

266

1ps ALy

We know from the previous chapter that the enemy we see in the scene above has a
3D position in the world represented by X, Y, and Z coordinates. However, when we are
playing Assault Cube, the game needs to display this enemy on a monitor, which is
two-dimensional. To do this, the game will choose a static view of the world, called a
viewport. In this case, the viewport is tied to the player model that we are controlling.
The game will then use this viewport to determine where 3D objects in the world
should be displayed.

A good way to visualize a viewport is to imagine a movie set. When filming a movie,
the set has actors, sound fixtures, lighting fixtures, and people and fixtures responsible
for practical effects. However, none of this extra information is shown when you watch
the movie, as the only view of this 3D world (the set) that you can access is the camera
filming a specific section. In this analogy, the camera is acting as your viewport into the
movie set's 3D world.

267

By moving around in the world, we are adjusting our viewport's position. For example,
by moving to the right of the position shown in the scene above, we have the following
scene:

fps 121

We can see that the enemy has not moved, but his model is now being displayed on
the left side of our screen. This is because when we moved our player, we also moved
our viewport into this world to a different position.

5.9.5 World to Screen

Like we did when developing our aimbot, we will simplify our ESP development by first
isolating the X (or left and right) value. After we have figured out how to calculate this
value, we can add our Y (up and down value). We will also develop our hack for a single
enemy and then add support for multiple enemies.

268

In this chapter, we will assume that you are running Assault Cube in a window of
1024x768. This means that our window is 1024 pixels wide and 768 pixels high.
Depending on where your viewport is in the world, the enemy will appear at certain
pixel values when the scene is rendered. For example, take the following scene where
we are looking at the enemy:

gruiiik_gruiiik :
100 = 200

In this case, the enemy is in the middle of our screen, or 1024 / 2. This means that the
enemy is at (roughly) the 512th pixel. When we move our player left, the enemy will
now appear on the far right of our screen:

269

It is hard to identify the exact pixel that the enemy is at here, but we can assume it is
roughly 1000. Likewise, if we move right, the enemy will appear on the far left of our
screen:

fps 121

270

Here the enemy starts at roughly 100 pixels.

We can represent these different scenarios in a series of equations. Since the default
view has the middle of our viewport lining up to the middle of our screen, we want to
find a value S such that all these equations below will be satisfied:

512 = 512 + S
100 = 512 + S
1000 = 512 + S

There is no constant value of S that will make all these equations true. We need a way
for S to be both negative and positive and represent values from roughly -400 to O to
400. To achieve this, we can expand S out into a multiplication of two values, as shown
below:

512 = 512 + (A * F)
100 = 512 + (A * F)
1000 = 512 + (A * F)

In these equations, A will be tied to how far the enemy is from our viewport's center,
and F will be a static scaling value. If we are looking directly at the enemy, A will be O,
making our first equation true. If we are looking to the right of the enemy, (A * F) will
produce a negative value to subtract from 512. Likewise, if we are looking to the left,
(A * F) will produce a positive value to add to 512.

5.9.6 Scaling Values

Next, we need to determine the values of A and F. When writing our aimbot, we
determined our current player's yaw as well as the yaw needed to aim at an enemy. In
that case, we then set our current player's yaw to the latter yaw. However, for this hack,
we can use the difference between these values as a value for A above. The larger the
difference between these values is, the farther away the enemy is from the center of
our screen.

We can use our aimbot code to determine what these values look like in the game. In
our aimbot code, we calculated the yaw via:

float abspos_x = enemy->x - player->x;
float abspos_y = enemy->y - player->y;

271

float azimuth_xy = atan2f(abspos_y, abspos_x);
float yaw = (float)(azimuth_xy * (180.0 / M_PI));
yaw += 90;

Unlike in the aimbot, where we set player->yaw = yaw, we will instead calculate the
difference between these yaws:

float yaw_dif = player->yaw - yaw;

We can use Visual Studio's built-in debugger to see what this value is. First, build your
DLL as normal. Then, open up Assault Cube, create a two-player game just like we did
in Chapter 5.6, and inject the DLL with a DLL injector. With our DLL injected, go into
Visual Studio and choose Debug -> Attach to Process:

Project Build Debug Test Analyze Tools Extensions Window Hel

Del Windows > |1

Graphics >

Auto

a_tnreaal)

\ J
] \

player off §

B - (E aver*

enemy list #"

enemy offs
enemy = (

player != NUL

abspos

N
a

~

Start Debugging

Start Without Debugging
Performance Profiler...
Relaunch Performance Profiler
Attach to Process...

Reattach to Process

Other Debug Targets

Step Into
Step Over

F5

Ctrl+F5
Alt+F2
Shift+Alt+F2
Ctrl+Alt+P
Shift+Alt+P

272

Next, choose the Assault Cube process, ac_client:

Abach to Frocaze ?
Connect cn type Defau
Connect L Leysl WZECGEV V10 ’ find_

Connect oo lyps nfommad co
The: chofonalt cer e o ket yuu acdox | peocosacs v i compo ooy con osamele somguler sunmeng P Vool Stede Romate Sl cipr
IMSVSMON L)

AMAh 1 Auormetz: Nadve code Selel.

Fralable ey,
F Rl pCoesie -

Froces w I te hpe Jser Hame s o

r_clentoae . LT~ 00 el S &= MEELCENINID, Zikspr |
Applicationframeatics. 1100 wid MSEQCEMINIDY, = e |
conf ot axe 44 wld ATSELGCENINTY, e T
st Laleoy 1L o1 MRELGENINID, s Ae T
card Lalesy 2 w61 MSECGENINIC, S he 1
cund waloa 3Me wid MEECCENINIC, S he 1
confcstoue a0 o MEECCENMINIGY Sser |
conb ot axe nod wid MECCENINID, = e- 1
et axe mia wld ASLLGENINTDG, e T
ot Laleow s ot-1 ARELGENMINIL, s A T
cand Colvou 4301 okt MSECGENINIDY S e 1
confcotone ¥4 = MEECCENMINICY Zser 1 v
I8 cw e fro sl e Pefresh

AR Cane

With this done, you can set breakpoints on your DLL code in an identical manner to

how we did previously for regular executable code. If you put a breakpoint on the line
assigning yaw_dif, you can see its value in the Autos window at the bottom of Visual

Studio:

273

Jucnmaix ook

Fnectod Croad .@" 2 85 % h

Nbgramce weoan Dasoonds

| 10s

cocs Merrary

I % o Nl prow sy

Evenis

= Lhosm tearba Nt)
Mooy Lasye

2

5 Enache baaas o0oft g (efects paecicnrurcs]

CPU Usage

S s Dwete 0

yanl <0302,

With this set up, we can now get our yaw_dif values. Repeat the same scenarios that
we discussed above (looking at, far left, and far right) and get the corresponding
yaw_dif values for each:

Looking at enemy:
yaw_dif -0.307769775

Enemy on far left of screen:
yaw_dif 34.9015427

Enemy on far right of screen:
yaw_dif -39.5185280

Depending on where you stand in the map, your values may be different. For the sake
of this chapter, we will use the values above for our equations. Let's plug these values
into our equations as the value for A:

274

Looking at enemy:
512 = 512 + (-0.307769775 * F)

Enemy on far left of screen:
<100 = 512 + (34.9015427 * F)

Enemy on far right of screen:
>950 = 512 + (-39.5185280 * F)

Since we are roughly estimating, we will round these values to the closest whole
number:

Looking at enemy:
512 =512 + (@ * F)

Enemy on far left of screen:
100 = 512 + (35 * F)

Enemy on far right of screen:
1000 = 512 + (-40 * F)

We can see that yaw_dif will satisfy our first equation regardless of the value we
choose for F. Using some basic algebra, we can solve for F using the far left and far
right equations:

Enemy on far left of screen:
F = -11.771428571

Enemy on far right of screen:
F=-12.2

Since these were approximations, we will take the loose average and choose -12 as our
value for F. Our initial equation to convert an enemy's position to a 2D screen
coordinate for the X dimension is:

screen_x = 512 + (yaw_dif * -12)

We will have to make adjustments to this equation, but it gives us a good starting
point.

275

5.9.7 Locating Print Text

To continue testing our equation, we need to find a way to print text on the screen. We
talked about how to find and hook a text printing function in Chapter 3.5. We will use a
similar approach here.

We want to identify some text that looks like it can be easily displayed anywhere on the
screen. After investigating some of the documentation, we can determine that the
showspeed command text is a good candidate, as it displays in the exact middle of the
screen:

Bots are ille
thowspeed » 0

Speed: 0.00

Since this text is static, we can search for its pattern in x64dbg and find where it resides
in memory. Attach x64dbg to Assault Cube, then navigate to the Memory Map tab and
right-click. Choose Find Pattern:

276

Sy

Fevrulakle ch
Head only 1niT
inicialized dar
Regources

Rasw 1w lim = i

Leeeutak 1 cod
Read-only init
Inilialiced da

Resrace &

Fel owr in Dizaszaay bies
Fel ow e Dure
Damp Yarony w0 Ak
Cowmers

Ryl Patternr

SRTET ey

This will allow us to search all the active memory in the game for whatever pattern of

bytes we specify. In this case, we will search for the start of this text, Speed: :

-~

277

The search should find a single pattern:

Address Data
004e201Cc | 53 70 65 65 64 3a 20

Double-click on it to show the address in the dump. Next, we want to see where this
memory address is referenced in code. Select the first letter and right-click. Choose
Find references:

x,dword ptr
Siod Pattern 15
14

=nd References dwere ptr
SYNS with exoression

Allocate Memaony

S0 %o

e x

lext
ecx=0
004202 "
~ [Tteger
.TexT:00408
et

AMddress

Dumrp S @ Waicn)
Disassermbly ASCIT

7T.GHOS
Al...[RVS
J layer As. .
wadigT ts. . .oack
ages/m sc/starts
craen.prg. . .USC

ny o> Speed
Lo ouU
N0 ob
[
65
b

b s) 02

S LA 1T, -
M MO

278

This will return a single reference, or place where this address was referenced by the
code of the game:

Brea<palnts W Memory Map

Pattern: 5370656564320

Aadress Disassembly

CO40BEGC muv e ,ac_u] ienl.<g201cC

Double-click again on this reference to be brought to the code responsible for
accessing this memory:

Breakpoi s ! 3 N ' Sugt ﬁ Svnbod:

B9 1C204ed0
DEZ1

¥ A

polc24

BY DUL/DUJD

wdd asp, 10
word pL
E¥ YFEYFFFF n -
8350 3CkR25000 OO0 cmp dword okr

Quickly analyzing this code, we see that we move a text string into ecx (in this case, our
Speed: string) and then push two values on the stack before calling @x419880. We can
see one value is @x708, or 1800 decimal. If we set a breakpoint on the call, we can see
the value of eax:

279

0x4B0, or 1200, and 1800 seem like reasonable X and Y values. Combined with a text
string in ecx, this function is most likely responsible for printing the Speed: text. We

can verify this behavior by modifying the push 0x708 to another value, like push
0x100:

DEC1

DIFA Fsqr

DD1C24 fstp qword ptr
68 0000 push 10C

0040BE7D 50 oush eax

83¢4 10 add esp, 10
Frl5 ADA24D00 dword ptr
> L . 3 14

Upon doing this, our Speed: text will appear near the top of the screen:

Speed: 0.00

From this, we can see that the method responsible for printing text expects Y to be
pushed first, followed by X.

280

5.9.8 Print Text Code Cave

To nail down our equation, we will use a code cave that will modify the showspeed
print text call to draw our enemy text. We will hook at the first push so we can push our
desired values on the stack:

BOOL WINAPI D11Main(HINSTANCE hinstDLL, DWORD fdwReason, LPVOID 1pvReserved)
{
DWORD old_protect;
unsigned char* hook_location = (unsigned char*)0x0040BE7S8;

if (fdwReason == DLL_PROCESS_ATTACH) {
CreateThread(NULL, @, (LPTHREAD_START_ROUTINE)injected_thread,
NULL, @, NULL);

VirtualProtect((void*)hook_location, 5, PAGE_EXECUTE_READWRITE,
&old_protect);

*hook_location = OxE9;

(DWORD)(Chook_location + 1) = (DWORD)&codecave -
((DWORD)hook_location + 5);

*(hook_location + 5) = 0x90;

Our code cave itself will push our currently assigned X and Y values on the stack, as
well as move some generic Enemy text into ecx. After we do this, we will jump back to
the original call to have it print out our text:

DWORD ret_address = OxQ040BEYE;
const char *text = "Enemy";

DWORD x
DWORD y

0;
0

__declspec(naked) void codecave() {
__asm {
mov ecx, text
push y
push x
jmp ret_address

281

We can verify that this code is working by setting our X and Y to @x10@0 in our thread,
after we calculate the yaw_dif:

X
|

= 0x100;
= 0x100;

<
|

If we go into a game and show the speed, you will see our text appearing in the upper-
left corner of the screen:

For now, we can use this to nail down our ESP. We will come back later and adjust this
approach so that we can write multiple text strings for multiple players.

282

5.9.9 Refining Equation

With a text function, we can now start working on the ESP. However, we first need to
adjust our equations. When we initially modeled the screen, we assumed that center
would be 512. However, from the speed function, we saw that center was 0x4B@, or
1200. Games will often make use of a "virtual" screen that will always be an identical
size regardless of the resolution. That way, developers only have to convert the
resolution into the virtual screen size once, but they can use consistent coordinates in
the rest of the code.

In this case, it looks like the game's virtual screen is 2400x1800. We can go back to our
original equations and update them with these new numbers:

Looking at enemy:
1200 = 1200 + (@ * F)

Enemy on far left of screen:
100 = 1200 + (35 * F)

Enemy on far right of screen:
2400 = 1200 + (-40 * F)

Calculating with these new values, we will get a different value for F:

Enemy on far left of screen:
F = -31.428571429

Enemy on far right of screen:
F=-30

Since these are again approximations, we will choose a value of -30 as our value for F,
making our new equation:

screen_x = 1200 + (yaw_dif * -30)

We can implement this equation in our main thread like so:

float yaw_dif = player->yaw - yaw;

283

X
I

(DWORD) (1200 + (yaw_dif * -30));
0x200;

<
Il

If you go into a game, the Enemy text will appear on the same X axis as the enemy
from certain angles, as we expect:

tme 'emiining: 1§ minutes

teh_ownerer

= 100

However, depending on what angle we are looking at, the text will appear far off to the
side:

284

teh_ownerer
' int

If we attach a debugger, we
value is over 180:

MNave
& J2mutn xy
b S playar
@ playar-yaw
- '. awm

& aw dr

arivuth_xy

{ =

VaN +- 20
di< = playwr-:

(1202 1 [vaw_dit

P Seach Daplie 3

Vaoar

312020853

QLOeTaZ3s uranown 1 =00 Tas ..
c50.021738

b TN S

24535220

; n1ds et TAFS
» 0 x
N

Lall sk
hame
B esp g tend_Lire

285

Just as a contrast, we can see that correct text values always have a yaw_dif value
under 180:

vas dif plaver->yaw - |

1{1282 + (yaw dif *

e 175 Chel TABS

- B X Crll Hack

Search Deptik = » Nome
zepdlllinjecte

Neme
¥ azimuth_xy
P& player
™ playsr->yaw
¥ yvaw
& yaw dif

This situation appears to occur when our player's yaw and the calculated yaw for the
enemy are between 275 and 360/0. When subtracting to get our difference, the
equations produce artificially high values that do not work with our scaling factor. For
example, if our yaw difference is 5, our text will be correctly displayed. Likewise, if our
difference is -5, the text will be displayed correctly in the opposite direction. However,
if our difference is -355, the text will be displayed incorrectly, as the equation's result
will now be 11,850, causing the text to wrap over to the other side of the screen.

Regardless of the viewport we choose, our viewport can never show more than 180
degrees of the screen. Any more would result in us seeing behind our player.

286

Viewport

To fix the case of -355 that we described above, we can subtract (or add, in the case of
negative) 360:

if (yaw_dif > 180)
yoaw_dif = yaw_dif - 360;

if (yaw_dif < -180)
yoaw_dif = yaw_dif + 360;

x = (DWORD)(1200 + (yaw_dif * -30));

With this in place, our text will always correctly display, regardless of the angle.

287

5.9.10 Up and Down

To calculate the Y dimension for our aimbot, we had the following code:

float abspos_z = enemy->z - player->z;

if (abspos_y < @) {

abspos_y *= -1;
}
if (abspos_y < 5) {

if (abspos_x < @) {

abspos_x *= -1;

ks

abspos_y = abspos_x;
}
float azimuth_z = atan2f(abspos_z, abspos_y);
float pitch = (float)(azimuth_z * (180.0 / M_PI));

We can use the same approach as above to calculate our Y dimension. We learned
from the speed function that @x7@8, or 1800, was the bottom of the virtual screen. We
can perform the same series of equations as above to get the scaling factor for V:

looking above the enemy (enemy at 1800)

pitch_dif 25.4983654
F=35.4

looking at enemy, 1800/2
pitch_dif -4.36527729
F=0

looking below the enemy (enemy at 100)
pitch_dif -41.1258888

F = 19.464720195

From these values, we will choose a value of 25 as our scaling factor:

float pitch_dif = player->pitch - pitch;
y = (DWORD)(900 + ((pitch_dif) * 25));

With this in place, text will now correctly display in the Y axis:

288

5.9.11 Final Adjustments

Right now, our text will always display, even if the enemy is behind us. To prevent this,
we will add a check into our print text code cave. In this check, we will set our string to
empty if the enemy is not visible in our viewport:

__declspec(naked) void codecave() {
if (x>2400 |1l x <0 Il y<0Ily>1800) {

text = llll;
ks
else {

text = "Enemy";
ks

We can also resolve the issue of text always appearing slightly to the left of the enemy.
For this, we will simply always add 200 to whatever X value we calculated:

289

else {
text = "Enemy";

}

X += 200;

Our text is now displaying correctly for a single enemy.

5.9.12 Enemy Name

With our coordinates nailed down, we can work on getting the enemy's name to
display above their head. Like before, we can find the player's name in the game's
Player structure and add it to our code's Player structure. Looking at the player
structure in memory, we see the player's name a bit after the yaw element we identified
before:

290

x

Addrecss

Y 10
1))
01
00
b 42
00
00
00
00
00
00
00
00
00
00
00
00
00
0o
00
00
0o
00
00
00
00
00
00
00

20 C1 00 00 0L ...@3
N ca 20 40 DD Cd 0n

20 CQ 00 0D 00

28 CQ 00 00 00

2E COQ 0O 00 DB CO 0o

)2 C 02)Z 00 -
J0 CO <8 4. 2 00 (C....u
30 F9 FF 0D CO c& 42(
30 €3 &9 07 BD K9 89 02

24 CO 00 00 00

26 CQ 00 00 00

a0 CU 0o 0y (4 0

28 CO 00 00 00

21 CO 00 00 00

20 CQ 00 00 00

20 CO 00 00

20 CO 00

78 CQ 00

W Ca oo

20 CQ 00

20 CO 00

J0 CU Lo

20 CO 00

o1 CO 00

=7 28 00

20 €O 00

20 CQ 00

20 CO 00

ab b1l BE

23 €0 00

s

=83 SARERR%Y

: 800 88K

—
b

1888
B8

‘888

88

88!

88"

) (
)

) (
) (

VOLUOUOL WO QUOUETI T QI Qg = o f

4
J
8
J
J
9
a
5
5
8
J
9
)
J
0
0

]
0
0
8
J
0

888!
888

=RR:

-
-

IS 528!

If we try to change our own player's name, we find that this can be a maximum of 16
characters. Subtracting the offset from our yaw value, we can create padding with an
unknown element, like we did in Chapter 5.6. Our player structure with the name now
looks like:

struct Player {
char unknownl[4];
float x;
float y;
float z;
char unknown2[0x30] ;
float yaw;
float pitch;
char unknown3[@x1DD];
char name[16];

1

We can now modify our code to use this enemy name instead of the generic Enemy
text. First, remove the else condition in the code cave which set the text to Enemy:

291

const char* text = ;

__declspec(naked) void codecave() {
if (x > 2400 |1 x <@ Il y <0 1l y>1800) {
text = "";

}

X += 200;

Next, after we calculate our X and Y, we want to set the text member to the enemy's
name by assigning the pointer:

text = enemy->name;

With this change, enemy names will now appear above their head:

stefanhendriks

292

In this chapter, we will only display the enemy's name. A similar approach can be used
to display the enemy's weapon, health, and other information.

5.9.13 Multiple Enemies

Now that we have a working ESP for a single enemy, we can expand it to include
multiple enemies. Like we did when creating our aimbot, we can use the same code we
nailed down above and include it in a loop.

First, instead of one X, Y, and name value, we will create an array. The maximum
amount of players in an Assault Cube game is 32, so we will use this as the size of our
array. For our loops, we will use the current number of players we identified previously,
so any extra array elements will not cause an issue. Since we will need to use this
current player element in both our calculation loop and draw loop, we will create a
global variable for it as well:

#define MAX_PLAYERS 32

DWORD x_values[MAX_PLAYERS] {0313,
DWORD y_values[MAX_PLAYERS] {01},
char* names[MAX_PLAYERS] = { NULL };

int* current_players;

Next, we will modify our thread to iterate over all enemies in an identical manner to the
aimbot. When we calculate the X and Y values, we will store these values in an array
instead of a single element:

current_players = (int*)(0x50F500);

for (int 1 = 1; 1 < *current_players; i++) {
DWORD* enemy_list = (DWORD*)(@x50F4F8);
DWORD* enemy_offset = (DWORD*)(*enemy_list + (i*4));

x_values[i] (DWORD)(1200 + (yaw_dif * -30));

y_values[i]

(DWORD)(center_y + ((pitch_dif) * 25));

names[i] = enemy->name;

293

Finally, we need to redo our text printing function so that we can print multiple enemy
names. We will use the same location, but instead of replacing the pushed parameters,
we will hook the call itself. In our code cave, we will replace the call with empty text,
and then create a loop to call the print text function several times.

First, we will change our hook location to hook the call:

unsigned char* hook_location = (unsigned char*)0x0040BE7E;

if (fdwReason == DLL_PROCESS_ATTACH) {
CreateThread(NULL, @, (LPTHREAD_START_ROUTINE)injected_thread, NULL, 0,
NULL);

VirtualProtect((void*)hook_location, 5, PAGE_EXECUTE_READWRITE,
&old_protect);

*hook_location = OxE9;

(DWORD)(hook_location + 1) = (DWORD)&codecave - ((DWORD)hook_location +
5);
ks

We can then delete our previous code cave and create a new one. In it, we will first
replace ecx with empty text, then call the print text function, and then save and restore
everything as we have done before:

DWORD ret_address = 0Ox0040BE&3;
DWORD text_address = 0x419880;

const char* empty_text = ;
__declspec(naked) void codecave() {
__asm {

mov ecx, empty_text
call text_address

pushad
ks
//1loop
__asm {
popad

jmp ret_address

294

To call the print text function by ourselves, we need to figure out how to fix the stack.
Remember the code we found:

DEC1

D9 =A fsq

DD1C24 fstp gword ptr ss:[esp
68 080700C0 push 70¢

£

. ; - _() - e
D0£03ETE ES FDDI00DCO s client.419880
J403E0J 6324 10 rdd eso . 10
FF1S a0A24000 dnord pt
Q - E .

When you see add esp or sub esp after a call, it means the called code expects you to
balance the stack. The easiest way to determine how to balance the stack is to find the
smallest value of esp being modified and use that call as a basis. This can be done by
entering the print text call and finding the references:

. Log ' Notes Breakpoints
004198

Address Disassembly

00404A22 call ac_client.419880

00408BD0 | call ac_client.419880

0040BBED | call ac_client.419880
call ac_client.419880
call ac_client.419880
call ac_client.419880
call ac_client.419880
call ac_client.419880
call ac_client.419880
call ac_client.419880
call ac_client.419880
call ac_client.419880
call ac_client.419880
call ac_client.419880
call ac_client.419880
call ac_client.419880
call ac_client.419880

295

After going through several of these references, you should find the following
reference, which shows that add esp, 8 is the lowest required value to balance the
stack:

“q]
7E A
& F030000
VR
< Wil & C0

£ ALy 20Co
$:C1 0B

e et

e 724 3

With this information, we can invoke the print text call ourselves. First, we will create a
loop that will iterate over all the current players in the game:

current_players = (int*)(0x50F500);

for (int i = 1; 1 < *current_players; i++) {

To make our array of values easy to use inside the asm block, we will copy the current
value into temporary variables:

const char* text = ;

DWORD x = 0;
DWORD y = 0;
for ...

x = x_values[i];
y = y_values[i];
text = names[i];

Like before, we will then check the values to make sure that they can be displayed on
screen:

if (x>2400 |1l x <0 Il y<0 Ily>1800) {
text = "";

}

Finally, we will move the enemy's name into ecx, push our X and Y values, and call the
print text function. After that, we will balance the stack:

__asm {

296

mov ecx, text
push y

push x

call text_address
add esp, 8

With this in place, we now have all the parts we need to handle multiple enemies. If
you build and inject the DLL into Assault Cube, you will see multiple enemy names
appearing above their heads:

wrulb ik graidis s edded
Lagin Kuits shraddad BUY NOW!

Lapin_Kulta Killer
HIBUY_NOW!!!

Kaltenberg

teh_smex

The full code is available for reference in Appendix A.

297

5.10 Multihack

5.10.1 Target

Our target for this chapter will be Assault Cube 1.2.0.2.

5.10.2 Identify

In the previous chapters, we created several hacks for Assault Cube, including a
triggerbot, an aimbot, and ESP. In this chapter, we will create a multihack that
combines these hacks together along with a wallhack. Then, we will add an interactive
menu that will allow us to toggle all the hacks we have created at once.

5.10.3 Understand

We have written code in the previous chapters for a wallhack, triggerbot, aimbot, and
ESP. However, if we try to combine all this code together, it will quickly become
overwhelming to add new features. To create our multihack, we will use a software
development technique known as refactoring.

When refactoring code, you take existing code and alter its structure without changing
its behavior. There can be many goals when refactoring, but in our case, our goal will
be to encapsulate certain functionality into classes so that the code can be separated
out into logical sections. This will clean up the code and make it easier to maintain.
Once this is done, we will build off this refactored code to add our menu.

This chapter will involve working with a lot of code. Each separate stage of the code
will be available in Appendix A for this chapter. The final code will be in the “Finished”
section.

5.10.4 Wallhack

In Chapter 5.3, we covered an approach for making a wallhack for games that used
OpenGL. We can use the same technique for Assault Cube with some small
modifications.

298

In the original target game (Urban Terror), we needed to check for counts and re-
enable depth testing if the model's count was not large enough. If we did not do this,
every item would have depth testing disabled. However, in Assault Cube, the rendering
logic works differently, and this check is not required. Additionally, Assault Cube does
not require us to worry about clipping planes. As a result, our glDrawElements code
cave can be simplified:

__declspec(naked) void opengl_codecave() {
__asm {
pushad
3

(*glDepthFunc)(0x207);

// Findlly, restore the original instruction and jump back
__asm {

popad

mov esi, dword ptr ds : [esi + OxA18]

jmp opengl_ret_address

By using the same hooking technique described in Chapter 5.3, we now have a
working wallhack for Assault Cube.

5.10.5 Combining

This combined code we are covering in this section is available in the “Combined”

section in Appendix A.

Our first task is to combine all of our code from the previous chapters into one DLL.
Our multihack will contain the following hacks:

¢ OpenGL Wallhack
« Triggerbot
Aimbot

« ESP

We can combine this code by copying it all into a single main file and changing any

conflicting variable or function names (like all the versions of injected_thread). The
result of this can be seen in Appendix A.

299

Looking over this code, the first thing that should jump out is that it is over 300 lines
long with 20 global variables. In addition, we can see that we have two threads being
created (one for hooking OpenGL and one for our aimbot) and multiple code caves.

With our combined code, we can make two small changes to slightly improve the size
of the code. First, we can combine together the aimbot and ESP code, since they use a
majority of the same logic. Second, we can modify the thread for OpenGL to break out
of its while loop once it hooks glDrawElements:

if (openGLHandle != NULL && glDepthFunc == NULL) {
glDepthFunc = (void(__stdcall*)(unsigned
int))GetProcAddress(openGLHandle, "glDepthFunc™);

// Since OpenGL is loaded dynamically, we need to dynamically calculate
the return address
opengl_ret_address = (DWORD)(opengl_hook_location + 0x6);

ks

else {
break;

ks

This will effectively exit the thread once we hook OpenGL, to prevent our hack from
having so many open threads.

In its current form, this code could be built and used as a multihack; however, it is
almost impossible to maintain. If we want to add a menu and a method to toggle
functionality, we would need to thoroughly examine all 300+ lines of code and make
sure our toggles do not introduce any unexpected behavior across the many threads.
Furthermore, we do not currently have a good way to print text outside of our ESP.

5.10.6 First Refactor

The source code we are covering in this section is available in the “First Refactor”

section in Appendix A.

There are multiple approaches that can be used to simplify our code. For our purposes,
we will encapsulate major functionality inside classes. Our end goal is to create classes
that can be easily reused in other FPS games. We will then call those classes from the
main file.

300

Classes in C++ commonly have two components: the header, which describes what the
class contains and is included by the caller, and the source, which contains all the
class's code. Therefore, we will split our multihack's code into Header and Source
folders for all the following refactoring.

A good place to start is the triggerbot. In its most basic form, our triggerbot sends a
mouse down event whenever we are looking at a player. To make this code reusable,
we will structure the triggerbot class to require the main hack to provide information on
if we are looking at a player.

Let's start with the current triggerbot code:

__declspec(naked) void triggerbot_codecave() {
__asm {
call triggerbot_ori_call_address
pushad
mov edi_value, eax

}

if (edi_value '= 0) {
input.type = INPUT_MOUSE;
input.mi.dwFlags = MOUSEEVENTF_LEFTDOWN;
SendInput(l, &input, sizeof(INPUT));

ks

else {
input.type = INPUT_MOUSE;
input.mi.dwFlags = MOUSEEVENTF_LEFTUP;
SendInput(l, &input, sizeof(INPUT));

}

_asm {
popad
jmp triggerbot_ori_jump_address

In Assault Cube, the edi register holds whether a player is being looked at. However, in
other games, this will be different. Therefore, it makes sense to only abstract out the
code between the __asm blocks. We can replace this code with a call to our triggerbot
class:

__declspec(naked) void triggerbot_codecave() {
__asm {

301

call triggerbot_ori_call_address
pushad
mov edi_value, eax

}

triggerbot->execute(edi_value);

_asm {
popad
jmp triggerbot_ori_jump_address

Now that we know how the calling code will look, we can create the class. First, we can
create a header that will contain the definition of our triggerbot class:

#pragma once
#include <Windows.h>

class Triggerbot {
private:
INPUT input = { 0 };
public:
Triggerbot();
void execute(int isLookingAtEnemy);

+s

Classes have both private and public members. Public members can be accessed by
other code. For example, we can see that the execute method will be called directly
by our main file. However, the main file will not have access to the input variable.

To implement the code for our triggerbot class, we will create the source file next. This
file will include the header we defined above, but will contain the actual code of the
class:

#include <Windows.h>
#include "Triggerbot.h"

Triggerbot::Triggerbot() {
input = { 0 };

302

}

void Triggerbot::execute(int isLookingAtEnemy) {
if (isLookingAtEnemy != @) {
input.type = INPUT_MOUSE;
input.mi.dwFlags = MOUSEEVENTF_LEFTDOWN;
SendInput(l, &input, sizeof(INPUT));

}

else {
input.type = INPUT_MOUSE;
input.mi.dwFlags = MOUSEEVENTF_LEFTUP;
SendInput(l, &input, sizeof(INPUT));

ks

This is the same as the original triggerbot code, except now encapsulated into this one
class. We could add this class to a hack for another game and it would work, assuming
that the main source file in that hack provided the correct value for isLookingAtEnemy.

To use this class in our main code, we will need to include the header and create an
instance of it:

#include "Triggerbot.h"
Triggerbot *triggerbot;

BOOL WINAPI D11Main(HINSTANCE hinstDLL, DWORD fdwReason, LPVOID 1pvReserved)
{

if (fdwReason == DLL_PROCESS_ATTACH) {
triggerbot = new Triggerbot();

}
else if (fdwReason == DLL_PROCESS_DETACH) {
delete triggerbot;

}

By structuring the code this way, our triggerbot code is now simplified and can be
easily modified. For example, to toggle the triggerbot on and off, we could simply add
a single conditional, like:

if(triggerbot_enabled) {
triggerbot->execute(edi_value);

303

We can also use this opportunity to remove the input global variable from the main
source file.

5.10.7 Finish Refactor

The code for this section is in the “Refactor Finished” section in Appendix A.

Another major component we would like to separate out is the code responsible for
the aimbot and ESP. Looking at the code, we see that it is responsible for setting the
following values:

x_values[i] = (DWORD)(1200 + (yaw_dif * -30));
y_values[i] = (DWORD)(900 + ((pitch_dif) * 25));
names[i] = enemy->name;

player->yaw = closest_yaw;
player->pitch = closest_pitch;

The X, Y, and name values are used for the ESP whereas the player's yaw and pitch are
used for the aimbot. To calculate these values, our aimbot and ESP require the player's
base address, the enemy list's base address, and the current number of players in the
game.

To encapsulate this behavior in a class, we will separate the functionality into two
functions. The first function will be responsible for calculating all the X, Y, and name
values for the ESP, as well as the closest yaw and pitch. The second function will be
responsible for setting the player's view to the calculated location. Separating these
functions will allow us to easily toggle both the ESP and aimbot.

Since this class is responsible for player geometry and the player's relation to the
world, we will call it PlayerGeometry. Like we did with the triggerbot, we can change
our aimbot thread to:

void aimbot_thread() {
while (true) {
playerGeometry->update();
playerGeometry->set_player_view();

304

Since this code is now easily maintainable, we can combine the two threads in the main
file:

void injected_thread() {
while (true) {
if (openGLHandle != NULL && glDepthFunc == NULL) {

playerGeometry->update();
playerGeometry->set_player_view();

Sleep(l);

Our PlayerGeometry class will contain all player-relevant functions. To handle printing
the ESP in our main file, the class will expose the array of X, Y, and name values:

class PlayerGeometry {

private:
DWORD player_offset_address;
DWORD enemy_list_address;
DWORD current_players_address;

float closest_yaw;
float closest_pitch;

Player* player;

float euclidean_distance(float, float);
public:

DWORD x_values[MAX_PLAYERS] = { 0 };

DWORD y_values[MAX_PLAYERS] = { @ };
char* names[MAX_PLAYERS] = { NULL };

int* current_players;

PlayerGeometry(DWORD, DWORD, DWORD);

305

void update();
void set_player_view();

+s

Unlike the triggerbot class, which just needed a parameter, this class requires the
player's base address, the enemy list's base address, and the current number of players
in the game. We will pass these in the constructor of the class, which is a special
function that executes when the class is created:

PlayerGeometry: :PlayerGeometry(DWORD p_address, DWORD e_address, DWORD
cp_address) {

player_offset_address = p_address;

enemy_list_address = e_address;

current_players_address = cp_address;

We can then use these values in the class's code:

void PlayerGeometry: :update() {
DWORD* player_offset = (DWORD*)(player_offset_address);
player = (Player*)(*player_offset);
. rest of aimbot and ESP code ...

}

void PlayerGeometry::set_player_view() {
player->yaw = closest_yaw;
player->pitch = closest_pitch;

When we create this class in our main file, we will pass these values. In this way, we can
reuse the aimbot code in any game that has a similar memory layout:

playerGeometry = new PlayerGeometry(@x509B74, Ox50F4F8, Ox50F500);

We will also need to adjust the ESP code to use the values from this class:

for (int i = 1; i < *playerGeometry->current_players; i++) {
x = playerGeometry->x_values[i];
y = playerGeometry->y_values[i];
text = playerGeometry->names[i];

306

Finally, we can move some variables that never change to a constants header, just to
separate the variables out from the main file.

5.10.8 Adding a Menu

The code for the rest of this chapter is in the “Finished” section in Appendix A.

With our code refactored, we can add a menu. First, we will extract out the text
printing functionality to its own function:

void print_text(DWORD x, DWORD y, const char* text) {
if (x>2400 |11l x <0 Il y<0Ily>1800) {
text = llll;

¥
X += 200;

__asm {
mov ecx, text
push y
push x
call text_address
add esp, 8

Like we have done with our refactoring, we will place our menu functionality in its own
class. Our menu needs to handle two things:

e Toggling items on and off
e Displaying a cursor and set of menu items

We will focus on displaying the menu first. To make the job of displaying the menu
easier, we will create two arrays in our menu class definition: one that contains item
display texts, and one that contains item states:

#define MAX_ITEMS 4

public:
const char* items[MAX_ITEMS] = { "Wallhack", "ESP", "Aimbot", "Triggerbot" };

307

bool item_enabled[MAX_ITEMS] = { false };

We will also need a way to return a string of On or Off depending on the item's state:

const char* Menu: :get_state(int item) {
return item_enabled[item] ? "On" : "Off";

}

With these pieces in place, we can now add a loop in the text code cave to display all
the menu items:

for (int 1 = @; 1 < MAX_ITEMS; i++) {
print_text(50, 250 + (100 * i), menu->items[i]);
print_text(500, 250 + (100 * i), menu->get_state(i));

With our items printed, we can move on to adding a cursor. Our cursor will need to
have a character and a position, so we will add these in the class definition. We also
need to create an external function to handle all input for our menu:

public:
int cursor_position;
const char* cursor = ">";

const char* get_state(int);

To handle our input, we will use GetAsyncKeyState, similar to what we did in previous
chapters. First, we will handle up and down:

void Menu: :handle_input() {

if (GetAsyncKeyState(VK_DOWN) & 1) {
cursor_position++;

ks
else if (GetAsyncKeyState(VK_UP) & 1) {
cursor_position--;

}

308

The &1 has the effect of only registering the key press a single time for a short period
of time instead of spamming it. The APl documentation discusses this behavior.

If we press left and right, we want to enable or disable an item. Since all the item states
are either true or false, we can simply switch their current value with the not (})
operator:

else if ((GetAsyncKeyState(VK_LEFT) & 1) || (GetAsyncKeyState(VK_RIGHT) & 1))
{

item_enabled[cursor_position] = !item_enabled[cursor_position];

¥

If we navigate past the boundaries of our menu, we want the cursor to appear at the
other end. We can do that by adding a few checks:

if (cursor_position < @) {
cursor_position = 3;

ks

else if (cursor_position > 3) {
cursor_position = 0;

}

We can now add our menu to our main file. First, we need the text code cave to also
print the cursor. We will make it look like it's moving by offsetting the current position
with a multiple of 100:

print_text(10, 250 + (100 * menu->cursor_position), menu->cursor);

In our thread, we also need to pass input to the menu to check for key presses:

menu->handle_input();

playerGeometry->update();

309

https://docs.microsoft.com/en-us/windows/win32/api/winuser/nf-winuser-getasynckeystate

5.10.9 Toggling Features

Finally, we need to toggle features based on their menu state. We already created an
array of all the item states. To determine the current value of one of the features, we
can query this array via:

if (menu->item_enabled[0])

To make these entries more readable, we can create constants in our menu header that
reference the positions for each item:

#define WALLHACK @
#define ESP 1
#define AIMBOT 2
#define TRIGGERBOT 3

We can implement checks in our code by using these values. For example, to toggle
the wallhack, we can change the code to:

if (menu->item_enabled[WALLHACK]) {
(*glDepthFunc)(0x207);
ks

This builds off of our refactoring efforts from before. To toggle our aimbot, we can
easily do the following in the thread:

if (menu->item_enabled[AIMBOT]) {
playerGeometry->set_player_view();

¥

Similar checks can be done for the triggerbot and ESP.

5.10.10 Adding Colors

Just for some visual flair, we can add colors to the menu items to make them easier to
read. By issuing votes in game, we can see that some text in the game already has

310

color, like the Press F1 to vote text. If we examine this string in x64dbg, we see that it
has the following data:

2% GRTM

R s e L

x5l
OrSecl

Osad ac_cliart.ova: fsund fuond

It looks like strings prefixed with @x@C 33 are given a color. If we look for other strings,
we see that @x@C is always there, but occasionally the value of @x33 will be different.
Let's incorporate these bytes into our on/off strings:

class Menu {
private:
const char on_text[5] = { @Oxc, 0x33, '0', 'N', 0 };
const char off_text[6] = { @xc, @x33, '0', '"F', '"F', @ };

If you go into the game, you will see both our strings are now red. If you play around
with the @x33 and try different values (@x31, @x38, etc.), you will eventually see that
0x30 is green. Now we can modify our code to change the On text to green:

const char on_text[5] = { @xc, @x30, '0', 'N', @ };

With this, our multihack is complete.

311

Part 6
Multiplayer

6.1 Multiplayer
Fundamentals

6.1.1 Peer-2-Peer

Imagine that two neighbors want to play a game of chess. One approach may be to
have Neighbor A set up a chess board in his house and give Neighbor B the house
keys. At any point during the day, Neighbor A could make a move. However, if
Neighbor B wants to make a move, he has to walk over to Neighbor A's house.
Additionally, if Neighbor B wanted to think on his move, he would need to take a
picture or somehow record the copy of the chess board before he went back over to
his own house.

This is an example of a Peer-2-Peer (P2P) model. In a P2P model, one player acts as the
host and all other players act as guests. This is the model many console games use to
handle multiplayer functionality. Its major downside is that the host will have an
advantage in terms of response time. This is because all other players must connect to
the host to retrieve and send updates, while the host can update his local copy.

6.1.2 Client-Server

Imagine now that Neighbor A and B want to play chess, while another neighbor (C)
wants to observe the chess game. This time, each neighbor has their own chess board
and all players agree that an additional neighbor (D) will be the judge. The judge is the
most trusted party of all involved and his roles are making sure no illegal moves
happen and maintaining the “correct” version of the chess board.

To make a move, Neighbor A would write his move on an envelope and place the
envelope in Neighbor D's mailbox. Neighbor D would then ensure that the move is
legal, update his board, and then place letters in Neighbor B and C's mailboxes
containing the move. Neighbors A, B, and C are all responsible for updating their
boards to match the board of Neighbor D. If Neighbor A delivers a move that is

313

impossible, Neighbor D will warn him that it appears his board is not up-to-date and he
cannot make that move.

This is an example of a client-server model, which we briefly discussed in Chapter 1.2.

Client — 1 Client
Client F— Server ~— Client
Client — | Client

In a client-server model, the server is a trusted entity that all clients connect to. When
playing a multiplayer game, the server will not directly participate in the game, but it is
responsible for keeping a trusted copy of the game's state. Each client will send
updates to the server, and the server will distribute those updates to other clients. If a
player sends too many updates that are not legal, the server will warn the client that it
is desynchronized before kicking the client off.

6.1.3 Packets

In the client-server chess example, each neighbor placed an envelope with their move
inside Neighbor D's mailbox. In networking, these envelopes are known as packets.
Just like envelopes, packets contain who the packet is from, who the packet is going
to, and the data itself. For example, if a player sends a chat message of hello in a
multiplayer game like Wesnoth, the packet might contain the following information:

source: player
destination: server
data: hello

The larger the packet, the more time it will take to transmit from the client to the server.
The more time it takes, the more lag is present in the client and server communication.
To ensure that lag is at a minimum, packets contain the minimum amount of
information possible. For example, if a client wants to say they fired a single shot from
their weapon, the packet might look like:

314

source: player
destination: server
data: f1

In this example, both the client and server agree that f means fire and 1 means 1
round.

6.1.4 Network Protocols

If you want to tell someone, "I like this restaurant,” you need to ensure that you are
speaking the same language as the other person. Depending on their language, the
syntax or structure of this sentence may differ, or certain words may be conjugated
differently. This same logic applies when sending packets over a network. These
communication rules are called protocols. These protocols determine how both the
source and destination will communicate and how individual packets will look. The two
main protocols you will encounter when looking at game network traffic are UDP and
TCP.

Imagine you want to send a letter to the neighbor across the street, reminding him to
water his plants. You do not expect a response to this letter, so you give it to your dog
to take over to him. You would like this letter to get to him, but you will not be
particularly upset if it does not. This is an example of UDP, in which packets are sent
without any method to determine that they have arrived.

Now imagine you want to exchange multiple letters with your neighbor. Since you will
be responding directly to what your neighbor says, you want to ensure that all letters
are delivered. You and your neighbor agree to light your respective porch lights when
you have received a letter. This is an example of TCP, in which an upfront connection is
established and packets are acknowledged as delivered.

The data contained within TCP and UDP packets can be identical, but the packets will
be different. This is because each protocol has a different header that is used by both
the source and the destination to understand the data in the packet.

6.1.5 Sockets

Both TCP and UDP packets use the Internet Protocol (IP) to handle the process of
routing the packet from the source to the destination. Each network device has an IP
address that represents that device's “location”. To differentiate between types of

315

traffic (such as web browsing, email, or video chat), packets also have a port number.
For example, to browse a website over HTTP, you could visit 123.45.67.89 on port 80.
While browsing, you could also connect to this machine using SSH, another service, on
port 22. Both of these requests could be handled simultaneously as they are being
handled by different programs listening on different ports.

An IP:Port pair is sometimes referred to as a socket. Sockets represent endpoints that
can be communicated with. Windows has an APl known as WinSock to enable

programmers to quickly write programs that communicate to different destinations
over TCP or UDP.

316

6.2 Packet Analysis

6.2.1 Target

Our target in this chapter will be Wesnoth 1.14.9.

6.2.2 |dentify

Like many games, Wesnoth has a multiplayer mode that allows multiple players to join
a lobby, chat with each other, and play games against each other over a network. Our
goal in this chapter is to analyze the packets used for connecting to the lobby and
create a client that will connect to a lobby.

317

6.2.3 Understand

For multiple players to communicate over a network, all of the clients (in this case, the
Wesnoth game executable) must agree on a network model and protocol. They also
must agree on the data each packet will contain. If there is a server, the server must
also agree with all of these components.

Since this data is structured, we can first identify the network model and protocol used
by the game. Then, we can observe the packets being sent and reverse the data to
determine what each packet is doing. We can then use the data in these packets to
create our own client using the Windows' Socket API.

6.2.4 Local Server

If you start Wesnoth and click Multiplayer, you will see the following screen:

Multiplayer

Login: |EUser
A registered account on the
Wesnoth forums is required to

join the official server.

318

These entries indicate that Wesnoth is using a client-server model. If we explore the
Wesnoth game folder in C:\Program Files (x86)\Battle for Wesnoth 1.14.9, you will find
a program called wesnothd.exe. Reading the documentation on the developer's
website, we know that this is a server daemon that allows you to host a server. It can be
run by invoking it from the command prompt:

B Ccmmanrd Frompt - wesnothd.exe

:\Program Files (x&€)\Battle for Wesrcth 1.14 _9>wasnothd.ex2

With the server running, we can now connect to it from Wesnoth. In the previous
chapter, we discussed how clients need to know two pieces of information to connect
to another host: the IP address and the port. In this case, the server is running on our
local machine. There are several reserved IP address ranges that will never be used for
normal network assignments. One of these is the range from 127.0.0.0 to
127.255.255.255, which is reserved for loopback addresses on the local machine. The
loopback component indicates that the external network will not be able to access
these IP ranges.

On all operating systems, 127.0.0.1 will always direct to your current host. In addition,
localhost is a hostname that directs to 127.0.0.1. Therefore, we know that the IP for this
serveris 127.0.0.1 or localhost. From the documentation, we know that the server runs
by default on port 15000. With these two pieces of information, we can connect to the
server.

Choose Connect to Server and then enter in localhost: 15000:

Connect to Server

You will now connect to the multiplayer ssrver

Scrver: |lecalhost15C20)

319

https://wiki.wesnoth.org/MultiplayerServers

When you hit Connect, your client will join a multiplayer lobby. If you observe the
server running in the command prompt, you should see that it has printed out the
connection event:

wisating connection »

TEUSaT das lopged «

6.2.5 Observing Packets

With the server running, we can close the Wesnoth client and start the process of
observing packets. There are many tools that can be used, but for these chapters, we
will use Wireshark. This can be installed via:

choco install wireshark

The first time you use Wireshark, you will also need to install the WinPcap driver as
instructed by the program.

With Wireshark and the driver installed, you can pick a network interface to observe on:

Capture

...Jsing this filter: |

Local Area Connaction* 8
Local Area Connaction* 7
Local Area Connaction™ 6

Ethernetd f._

Each listed network interface represents a piece of software or hardware that connects
to a public or private network. For example, the EthernetO interface listed is the default

320

network card used to communicate over the Internet for this particular VM. Depending
on your VM and computer, these interfaces may be different.

In this case, we know all of the traffic for our game will be flowing on the loopback
interface, so select Adapter for loopback traffic capture. Upon selecting this, Wireshark
will start monitoring for packets. Open up Wesnoth and connect to the local server.
When connecting, you should see Wireshark log multiple packets:

3 S 01 13000 [ACK] Sewrl Whsl Sl 2019048 Lowd
10 3.104655 127000 127001 rce - f‘“‘: - 15000 [P0, ACK] Seged Ackel WIn<ICISCAN Lened l

11 3, 19465 12r.e0, 120,001 e 4l 1000 « 59563 [AMK] Sear] MinS dimelGl96i8 Lend
12 3. 19a8 12ree. 120,001 e g A1 1000 « SO56D [P, M) Seqel Ackes WInelG1v6AE Lened
13 11950 121,00, 120,001 e A SES60 + 15000 [AX] SeqeS MinS dim G968 Lend

Initially, this can appear overwhelming, so let's break down what exactly we are seeing
here and identify what we care about. In the protocol column, we can see that Wesnoth
is using TCP:

? L A%eN : 12500,
10 3. 1044555 127900 127002
11 3, 19445 121,00, 120,00,.1
12 3, 19a8 121,00, 120,001
13 31,1950 120,001

A4 3301+ 13000 [AX] Sewrl Mhsl wlew2003048 Lot
A SHECT < 15000 (PRI, ACH] Sead Ackel MIA-IG1SEAN Lenod]
&l 1900 « 59563 [AMK] Sear] MinS dimelGl96i8 Lend

45 19900 « 5956 (P9, MCK) Saqel Ackel WInelG19648 Lened

41 SE56) <+ 15000 [AK] Seqs MinS dimlGI96I8 Lend

We know from the previous chapter that TCP initiates an upfront connection and
acknowledges when packets have been received. This initial negotiation is known as a
three-way handshake, and has three parts:

1. One side sends a packet with a SYN flag.
2. The other side responds with SYN and ACK flags.
3. The first side sends an ACK flag.

We can see this behavior in the first few packets highlighted below:

: b 3301 + 15000 [AX] Jewrl WMhsl sl 9048 Lowd
10 3. 1044555 1227900 127001 rce A) SH5CL - 15000 (PRI, ACK] Seg-] Ackel WIN<IGISCAR Lened l

11 3, 19445% 121,00, 120,00,.1 oe 4l 1900 + S5 TAMK] Seae]l MinS dimlGl96i8 Lend
12 3, 19a8 121,90, 120,001 ey A5 1000 « SO%ED (PR, K] Seqel Ackes WInelG16AE Lened
13 1,198 121,90, 12,00 e & SE560 + 15000 [AX] SeqeS MinS dimelGI96G8 Lend

321

Since we know 15000 is the server's port, we can determine that 50563 is our client's
port. However, this number will probably not match the number you are seeing. If we
close Wesnoth and start it again, we will also see that this number changes:

kn Tine Sore Destnaien Fratocel 1ength Info
1€ 1.608314 127.2.9.1 127.0.¢.1 TCP 48 5077¢ » 150¢¢
12 1.699436 127.6.9.1 127.8.€.1 icP
14 1.910652 127.€.9.1 147.9.€.1 P
1€ 1.613925 127.2.9.1 127.0.€.1 ~CP
18 1.020996 127.2.9.1 127.8.¢.1 Tcp
20 1.9435/09 127.2.9.1 1./.9.0.1 P
22 1.624201 127.2.9.1 127.0.€.1 ~CP BS 15@ee - S877¢
24 1.7%475a 127 .2.9.1 127.0.é.1 Tce 174 150@@ -+ 50776

This is an example of an ephemeral, or short-lived, port. Since the Wesnoth client does
not need to be discoverable by other users, it can choose a "random™ available port
each time it starts up. When the client is closed, it will free this port. This is in contrast
to the server, which always needs to be discoverable on port 15000 by clients.

None of the packets we have examined so far contain any data. We can determine this
by looking at the len member:

11 3, 19445% 121,00, 125,001 e g 4l 1900 + S5 TAK] Sear]l M5 dimelbi96i8 Lend
12 3, 19a8 121,00, 120,001 roe A1 1000 « SO56D (PR, K] Seqed kel WInelG16AE Lened
13 .19%58 12190, 125,00 e & SE560 <+ 15000 [AMX] SeaS MknS dmIGl96i8 Lend

Looking at all the packets, we can see that the only packets with data have the PSH
flag. This flag tells the TCP connection to immediately send whatever data is inside the
packet to the associated application instead of placing it in a buffer. We can filter for
this flag in Wireshark to only see the packets that we care about via tcp.flags.push ==
1:

dw @ TRE N ETAESEAQAQaD
N Tecptage puth we 1 B
e e Soue Cesonaton Mool Lergth Ve
19 L.1mese 127.0.01 12).0.01 o A5 WSS « 1HONN [F3, AK] 30gv] ACKrl NIASZAI9GLE Lenes
12 195884 127.0.0.2 12J.0.0.1 1 48 B000 « SA563 [PSh, AK] Segel ACKsS WLAR2R19648 Lennd
14 _.19i818 127.0.0.1 12].0.0.1 e 81 5000 « SA563 [PSH, AK] SeqeS ACKS WiA=2819648 Lenwd)
16 . vRas 17408 121 A0 "we A5 GACAT « 10 [PCS, A0K] Sanel Arked) YEne RTOMAR lanatY
18 0.21:497 127.0.0.1 127.0.0.1 bl 84 5000 » 51563 [PSH, MK] Seqedd ACKe56 Wim 2619648 Lensdd
% _.21s008 nr.e.ai i22.0.0.1 T 26 0343 » 11000 [F30, AK] Sowe3S ALusB2 Nl ld19048 Lowde
22 1. 21646 127.0.9.1 127.0.0.1 T 85 500 «» SI561 [PSH, MK] SeqeR Actell) Wine2619648 Lered)
M4 L2579 127.0.90.13 127.0.0.1 e %9 B - SA56] [PSE, MK] Seqel2d Akell® Mne1568 LenelS

322

6.2.6 Packet Structure

When you select a packet in Wireshark, it displays the full packet broken down in
different segments. For example, if we select the first packet of len 4, we will see the
following view:

Sull/Loopbacs
Internet Pretocel version 2, Src: 127.0.9.1, Dst: 1z7.9.2.1
» Transni=sian Contrnl Protarnl, Sec Port: 86553, Dst Porc: 15840, Seq: 1, Ack: 1, len: &
v Data (1 bytes)
Nata: OIKEARE
[Cengtih: 4)

LAY R L AL 99 €9 2¢ 5b 22 19 D@ B €5
210 CAEC I e - Rl ¢S 33 33 98 ¢S 51 62 75 Sbu
"4 hA dE Sa ¢1 G54 18 27 F9 53 51 @A BA 32 @2 0@ M 2-p rQ

As you select different components (like IP and TCP), the associated parts of the packet

will be highlighted in the bottom section. For example, by selecting the TCP
component, the following section is highlighted:

Null//Loopback
Internet Protecal varsion 4, Srcr 127.2.0.1, Ost: 127.0.€.1
Transmission Contreo’ Protocal, S~ Tort: S3563, D=t Port: 15622, Seq: 1, Ack: 1, len: &
v TJata (8 ytes
Nata: AMREDIEG

[Tengra: 4]

G2 GF @8 M 45 G2 @B 2¢c Sh 27 AR €6 3G 95 B2 GR
w18 7f OC 96 Jf 02 OC
8020 g 2 10 27 o0 5 92 o2

323

For the purposes of this chapter, we can ignore the IP and TCP components and focus
on the data component for all the packets:

» Interaet Protocol Version 4, Sec: 127.9.9.1, Dst: 127.8.9.1
» Transmdssicn Control Protocol, Src Port: 53553, Dzt Port: 15220, Seq: 1, fck: 1, Len: 4
v Data (1 bytes)

Tarar AMADIA

[engthk: 4]

B7 FQ A6 AR A5 M ERQ Pc Sh 27 A7 B RO @6 @R ceeiBaa, TP
TF 20 20 0L TF 20 €0 01 3 82 3y £8 ¢ £3 62 T : Shy
€020 bG e3 Sa iR lB 2779 0510 o BB -zZe'- - BB

Given that data in packets is often compressed, it is difficult to determine the purpose

of a single packet in isolation. Instead, it is easier to look at the overall flow of network

traffic and determine the role of each packet. In our case, the flow of network traffic for
connecting looks like:

d = @ TRE N ETE S aqeam
N |ecptagegush we o]
e ~e Souce Cesonaton Poocl Lergth Ve
19 LIS 127.0.01 12).0.01 wor A5 WSS « 1HNW [P38, AK] 30gvl ALKl NLASIAIZLE Lened
12 L.19888 127.0.0.12 12.0.0.1 1w 48 B000 « SA563 [PSh, AK] Segel ACKS WLARR19648 Lennd
14 L. 19818 127.0.0.1 12.0.0.1 e 81 5000 « SA563 [PSH, AK] SeqeS ACKS WiA=2819648 Lenwd)
15 Misaa 127400 12101 " G5 GACAT « 10 [P, K] el Arkad) YIna RI0MAR Tanety
18 1.21:497 127.0.0.1 127.0.0.1 e 84 5000 » S563 [PSH, MK] Seqedd AC=56 Win2619648 Lensdd
% L.21s008 nre.si 122.0.0.1 T 96 0343 » L1000 [F38, AK] Soue38 ALisB2 Nl lal0048 Lowdde
22 1. 2166 127.0.9.1 127.0.0.1 e 85 500 «» SI563 [PSH, MK] SeqeR ACtell) Wine2619648 Lered)
M L2079 127.0.0.13 123.0.0.1 e B9 B0 « SI561 [PSE, MK] Seqel2d Akell® Mne15648 LenelS

We know that packets from 50563 -> 15000 represent communication sent from our
client to the server, and 15000 -> 50563 represent communication sent from the server
to our client. As such, the network traffic looks like:

Client -> Server Packet 1
Server -> Client
Client -> Server Packet 2
Server -> Client
Client -> Server Packet 3

M

Since we are writing a client, we will only need to reverse the three packets being sent
from the client to the server.

324

6.2.7 Sockets

Each OS will have its own set of API’s that allows you to interact with the networking
stack. In Windows, this APl is known as Winsock. Microsoft has comprehensive
documentation available on how to use this API, including the process to establish a
socket. This is available here.

Microsoft also provides a complete example using these API's here. This example will
create a TCP connection to a provided IP on port 27015 and send a single packet
containing the data this is a test. It will then continuously wait for packets from the
server. We will base our code on this example.

A good starting place is to see how the server responds when we simply use the code
as is. Since we are targeting a specific IP, we will remove the following code from the
example:

i Carget=—2)f
—return—1;
3

Next, we can modify the getaddrinfo function to use the values for our server:

iResult = getaddrinfo("127.0.0.1", "15000", &hints, &result);

With these changes, compile the code and run the executable. If you have Wireshark
still logging, you should notice your host sending a packet with the data this is a test
to the server. If you look at the server process, you will see the following message:

20210403 909:34:98 error server: 127.92.0.1 incorrect handshake

6.2.8 Reversing Packets

This message indicates that the first packets sent by our client must initiate some sort
of handshake. Let's compare the first message logged by the server for a valid
connection:

325

https://docs.microsoft.com/en-us/windows/win32/winsock/getting-started-with-winsock
https://docs.microsoft.com/en-us/windows/win32/winsock/complete-client-code

P | yer]-‘Fil\"'d <3 ng ac l'v"[‘;f' = version 1.14.9; = | l‘.ll‘l‘l‘{ them To lx‘:.-’_ in

I[ZJser has lczped cr
Going back to our Wireshark capture, we can see that the first packet sent by the client
contains 0@ @@ @0 0. The server then responds with data. From this, we can assume
that the data 00 00 00 00 is interpreted by the Wesnoth server as the start of a
handshake.

We can modify our socket example to perform this behavior. First, remove the
following code since we will be writing our own sending code:

Next, create a buffer that will hold our 20 00 00 00 data:

const unsigned char buff_handshake_pl[] = {
0x00, 0x00, 0x00, 0x00
s

Finally, add the following code to send this data and receive a single packet back:

iResult = send(ConnectSocket, (const char*)buff_handshake_p1,
(int)sizeof(buff_handshake_pl), 0);
printf("Bytes Sent: %ld\n", iResult);

326

iResult = recv(ConnectSocket, recvbuf, recvbuflen, 0);
printf("Bytes received: %d\n", iResult);

If you run this program, you will receive 41 bytes back. This is equal to the two
responses sent by the server in Wireshark, indicating that the first packet sent by the
client initiates the handshake:

dm:® DRET A ETL oD aqau
N | cptagepush we Y x

[- Some Cresmatxn Moocd Lergth e

19 .1wese 127.0.01 12.0.01 wr A5 WSS « 1HONN |3, AK] 3gel ACKel WIA=NI90AY Lenad

12 L.19884 127.0.0.1 12J.0.0.1 e 48 B000 « SA563 [PS, AK] Segrl ACKsS NWiae23196:8 Lened

14 19:818 127.0.8.12 12).0.0.1 o 81 5000 « SA563 [PSE, AK] SeqeS ACksS Wia=23196:8 Lened)

15 Mrigaa 127000 121 A0 " G5 GACAT « 10 (PSS, AK]) aef Arkad) inea 'R OUER ToanatY

18 0.21:497 127.0.9.1 127.0.0.1 e 84 5000 » SA563 [PSH, MK] Seqe® AC+56 Win 2619648 Lensdd
i® 21018 i27.0.%.1 i27.0.0.12 LA 36 30343 » 11000 [F30, AK] Sowued Avis=B2 Niln2d10048 Lode
22 216046 127.0.0,1 127.0.8.1 e 35 5990 - 9563 [F"-l, ME] SeqeR Aci=11) Wine26I9648 Lered)
M 22:739 127.9.0,.1 123.0.0.1 e O B0 = SA56) [PSE, MK] Seqel2) AKkell® Mne15968 LenelS

From the server messages, we can see that the next packet the client is responsible for
is sending their current version. An example of this packet's data is shown below:

0x00, 0x00, 0x00, Ox2f, Ox1f, Ox8b, Ox08, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, Oxff, Ox8b, Ox2e, Ox4b, 0x2d, O0x2a, Oxce,
Oxcc, Oxcf, Ox8b, Oxe5, Oxe2, Ox84, Oxb2, @xo6c, 0Ox95, 0xOc,
Oxf5, Ox0c, Ox4d, Oxf4, Ox2c, 0x95, Oxb8, Oxa2, Oxf5, Oxel,
0x92, Ox5c, 0x00, Oxcd, 0x38, Oxd3, Oxd7, 0x28, Ox00, 0x00,
0x00

Even when converted into ASCII, our game version (1.14.9) does not appear in this
data. This is because, like most games, Wesnoth compresses all data by default. In
future chapters, we will examine the compression scheme used so that we can create
packets with custom data. However, in this chapter, we will not need to do this since
this data does not change. You can verify that by joining the same server multiple times
with Wireshark running.

Let's add this packet to our program to send as well:

const unsigned char buff_handshake_p2[] = {
0x00, 0x00, 0x00, Ox2f, Ox1f, Ox8b, Ox08, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, Oxff, Ox8b, Ox2e, Ox4b, 0x2d, Ox2a, Oxce,
Oxcc, Oxcf, Ox8b, Oxe5, Oxe2, 0x84, Oxb2, @xo6c, 0Ox95, OxOc,
Oxf5, Ox0c, Ox4d, Oxf4, Ox2c, 0x95, Oxb8, Oxa2, Oxf5, Oxel,
0x92, Ox5c, 0x00, Oxcd, 0x38, Oxd3, Oxd7, 0x28, Ox00, 0x00,

327

0x00
}s

iResult = send(ConnectSocket, (const char*)buff_handshake_p2,
(int)sizeof(buff_handshake_p2), @);
printf("Bytes Sent: %ld\n", iResult);

iResult = recv(ConnectSocket, recvbuf, recvbuflen, 0);
printf("Bytes received: %d\n", iResult);

With this additional packet, the Wesnoth server will now think that a client is sending
them a game's version before closing the connection:

ayer Joined asing eepted

conneclion closed

Finally, we can add in the name that our client will send. Since we have control over this
field, we can use it to observe the compression scheme in use. With Wireshark running,
connect to a server with two usernames, one short and one long. In the long username,
make sure multiple characters repeat in a row. This will allow us to detect patterns. In
this chapter, we will use the examples of FFFAAAKKKEEE and IEUser. Their related
packets look like:

MR 200 el ®{r i .00 11000 e 3 Liss - B2
ML e e xr " e H.n L w 5 5580 < A5
M Lo U ur.ae ny N 3.0 13700 . w o4 Liet ~ 30440
E NN NLE -] A ArC R N] o e e PPN 11000 " AR WA Tvee
32 Lom 1220000 01 ®{r AU <3 LN 2.0 133000 e S5 Lo < E0is
ML t P N wra.e xr MM “dunesn . 130 w 103 L - 250

PrAas 0TI RpTed A W re IRBE NITDL TIR Rpted PRV Erad ORI N 4] A Ialerd O BIWES TED NN DYTAL O W0 1AM ITITLE. NP DyTAC CATATAE 1ANE IOTLI OF INEACTACE L3NV (0w

LV L M/ Lonplack

e T Notaiel wralos 4, Sec L2F.CALE, Mits ARP 00 Inberset Frotace. Versdmm &, S A2 04 0t R0 00

oy S Bramde By Sl 05 Bl P TN, beq, M ML B2, v M

135n Contrel Protecel. ST Pertc 330, O Tort 15000, Sec: SO M Trwon

La o
b marn A e ¥ LMIA (W EyTR)
Outs i GODIE 2 SFETIIMGIGOMIOM AT i bl i ol 3i 2% 3 0 heatdni K1 1T ot n e QOB) AR PARSOINNONONM 1T bowe A4 0§ coligie Y e Jhle 14r adhe oG 150 LA
Lrgthc & [veng¥ £8)
R MBNANNN KA B L LR B MM LACIE Yy M2 ™ P r® L
T ME PN RS Y M 1 n R W Tl S8 W 0
P M M ML oW N W LR o8 S L2 38 AR LY 19 Ao T »
A BB 00 M fadaf o vrmeenr canDes o« 17 0L 05 00 6C 00 20 4C 00 1T B e b 47 <f G
Bk e 2l A ol -~ v‘\h';;:.lf)”i S R ST T RIS <% o B¢ Ge & Moae ez S5 T M
P Y AN A AL PN RS i 0e N Y " e W 3 M N
» W e ¥ B L) 3

¥ Lessdteaceul N vem P i BT e O sy

The highlighted areas most likely represent the compressed name of the user. Let's try
sending the data from the FFFAAAKKKEEE request, but slightly modifying the bytes for

the name:

328

const unsigned char buff_send_name[] = {

0x00, 0x00, 0x00, Ox3a, Ox1f, Ox8b, Ox08, Ox00, Ox00, Ox00,
0x00, 0x00, 0x00, Oxff, Ox8b, Oxce, @xc9, Ox4f, Oxcf, Oxcc,
0x8b, Oxe5, Oxe2, Ox2c, O0x2d, Ox4e, Ox2d, Oxca, Ox4b, Oxcc,
Ox4d, Oxb5, Ox55, Ox72, Ox74, Ox74, Ox74, Ox74, Ox74, Oxf4,
0xf6, Oxfo, Ox76, Ox75, Ox75, Ox55, Oxe2, Ox8a, Oxdoc, Ox87,
Oxaa, Oxed, 0x02, 0x00, Oxal, Oxfc, 0x19, Ox4c, Ox2b, 0Ox00,
0x00, 0x00

s

iResult = send(ConnectSocket, (const char*)buff_send_name,
(int)sizeof(buff_send_name), @);
printf("Bytes Sent: %ld\n", iResult);

If we observe the server, we see the following error:

info zerver: 127.€.2.1 plaver joined usinp acceptec versior 1.24.9: telling them 1
arror centig: ERRCA; “failed to uncompress”

error server: 127.98.6.2 sinple_wnl errcr in received dala: felled Lo uvncompress

This verifies that the packet is being compressed, and even indicates the compression
scheme (simple_wml). We can use this information in future chapters when we want to
create our own packet. For this chapter, we can just modify buff_send_name to contain
the original data:

const unsigned char buff_send_name[] = {

0x00, 0x00, O0x00, Ox3a, Ox1f, Ox8b, Ox08, Ox00, Ox00, Ox00,
0x00, 0x00, 0x00, Oxff, Ox8b, Oxce, @xc9, Ox4f, Oxcf, Oxcc,
0x8b, Oxe5, Oxe2, Ox2c, Ox2d, Ox4e, Ox2d, Oxca, Ox4b, Oxcc,
0x4d, Oxb5, Ox55, 0x72, Ox73, Ox73, Ox73, Ox74, Ox74, Oxf4,
0xf6, Oxfo, Ox76, Ox75, Ox75, Ox55, Oxe2, Ox8a, Oxdo, Ox87,
Oxaa, 0xed, 0x02, 0x00, Oxal, Oxfc, 0x19, Ox4c, Ox2b, Ox00,
0x00, 0x00

s

With this change, our client will now connect to the server using the name
FFFAAAKKKEEE. If you join the lobby with a legitimate client, you will notice that our
client is also connected.

329

The full code for this client is available in Appendix A.

330

6.3 Reversing
Packets

6.3.1 Target

Our target in this chapter will be Wesnoth 1.14.9.

6.3.2 |dentify

In the previous chapter, we identified the packets used for connecting to a Wesnoth
server. We then wrote a client that would replay these packets. In this chapter, we will
identify the packets used for sending chat messages and reverse their structure. This
will allow us to create our own legitimate packets instead of only replaying packets.

6.3.3 Understand

For clients and servers to communicate over a network, both sides must agree on how
to structure the data in each packet. Since this structure must be reversible for each
side, we can also reverse it. Once the data is reversed, we can modify the data and do
the opposite of the reversing process to create a new packet.

6.3.4 Chat Packets

Similar to reversing an executable, it is helpful to have a context when reversing
packets. With executables, this context is often a string that we have observed inside
the executable. When it comes to packets, this context is some type of data we can
control in the packet.

Typically, you control several pieces of data in a packet. For example, most games
allow you to set your name. Other games will allow you to connect with multiple
versions or certain mods. Both of these pieces would allow you to associate certain

331

data with certain packets. However, one of the easiest pieces of data to control is a
game's chat messages. Since Wesnoth allows players to send chat messages, this is the
context we will use for this chapter.

Start Wesnoth and connect to your local server with a user named FFFAAAKKKEEE,
identically to the last chapter. Once connected, start Wireshark to log packets. To help
reverse the game's packets, we want to answer a few questions:

1. Isthere any randomness or time element encoded in the packets?
2. Can we observe patterns of letters in the packets?
3. Can we observe any human-readable characters in the packets?

To answer these questions, we can send the following four chat messages:

4 a
i a
i aaaaa
e hello123
B ¥ X .. 9 . L ™ oW,
! k,v.?_w-.l
- Tiom P — - Pwaw Lo iy
1@ dedeiw 1n7eel 12T.0.0.0 e 126 45383 = 19090 [I1S8, ACK] feasl Mhe1 M
306 127eel 1200 TP 126 45343 » 190%0 1158, ACKT feosld Ackel ¥
R U 13701 2T 60 e 130 AMIeD < 10080 [, ALK Jea-l6l Mgkl
TS 7TA™S) 1wreel 270 T B33 A543 = 10040 [138, AKX loymidld Sude]
FIONE 55 340 CYTEL 00 WOCY (AVEE SATS), 246 DYTES CAPTSREC LAWME CATS| ON 1ATErmAce \LBVICR YN LODPDNKK, 15 W
Wl / locpteck

Interset Pretecol Verdion 4, ‘re: 13700.1, Bat: 13700
Trassahasbor Contral Fretaeel, fre Tarky 40460, Dyt Purds 15000, Sear 3, Mbr 3, Lem B2
et 184 Oy)

NN ANN YieO NN
MdemMmaiTexma

7 5% 08 8545 Fs S0
M 5

The first two messages are identical and will help us determine if identical messages
result in identical packets. The third message repeats a several times, allowing us to
observe any type of data patterns. Finally, the last message will immediately tell us if it
appears readable in a packet.

332

6.3.5 Test Cases

Examining the data of the first two packets (a and a), we can see that their data is
identical. This means that the packets do not contain a timestamp or any other
uniqueness factor:

'S

C v vvuwy

Jata

1 B, Retern 17Leea

3BT ™ 4000
§ 2.498755 127.8.8.1
2 5.01495% 17288

182 bytes)

1724.18.6.1
R R |
137,861
N R |

(4 J TOE AU o 1588 [0, A0x] Segel Ack=1 b
e TR AVERS - 1580 [IS4, M0K] SegERs tok=
e TIR AVERS = 1588 [254, /0<] SegEins Gk
e 130 45R63 = 1500 [950, 404] SAqa293 feka

Frase 9: 126 hytes on wire (100 kitx), “26 hytes capturec (1028 bite) oo interfaca \fevicalif ooctack, ‘a &
Null/Locpback
Internet Frotoccl versizn 4, Src: 127.€.8.1, Ost: 127.€.0.1

Transsizsicn Control Protoccol, Src Port: 40863, Dot Port: 15802, Soqr 83, Ack:r 1, .en: E2

Dot EOQECE4CLIZLCEECONCCCECOD HELCOII 20200 4P ECCSCIT4LEECD: 1105033230282,
ength: @)

[

JO1E
a2
ge3e
ARAE
ges
R8EE
vere

2007
cO1E
a02¢
203e
2042
f058
206e
207g

A2 76 20 26 45 26
20 21 7f 20
cl ¢ 18

7f go

NES

fE

7¢ &d &S
291 ¢33 41

40 0 7O €6 PO @O v sFor| 1@ e
Sa S8 €b Ec ¢6 24
Qo

P2)
--Urssst

333

This pattern is too long for aaaaa, and its structure of 3-3-3-3 is closest to our player's
name (FFFAAAKKKEEE). We can see that this pattern also occurs in all of our
messages, indicating that one element of this packet must contain our player's name.

Finally, examining the data of the last packet, we cannot observe anything that would
resemble hello123.

Next, let's observe the difference between the packets for the message a and a new
message b to help determine how single characters are handled:

- e B — T = —
1 0. 0000 127.0.0.1 127.00.1 o 126 45363 » 15000 [PSH,
3 9.65334] 127.0.0.1 127.00.1 TP 126 45363 » 15000 [PSH, 4
S 2.9615% 127.0.0.1 127.90.1 TP 128 45363 « 15000 [PSH, 4
7 5.714758 127.0.0.1 127.90.1 TP 133 458€3 » 15000 [FSH, 4
15 183. 02621 127.0.0.1 127.00.1 TP 126 45363 «» 15000 [PSH, 4

Frame 15: 126 bytes on wire (1098 bits), 126 Bytes captured (1098 bits) on interface Device\WPF
Nell/ Loopback
Internet Protacol Version 4, Src: 127.9.9.1, Dst: 127.9.9.1
Trarsmission Control Protocol, Src Port: 4586), Dt Port: 150909, Seq: 1B, Ack: |, Len: K2
v Dats (52 bytes
Data: delf fELCeAdldIeledcafBde 5o 2 BAD2 G959 79450 180042 1)
{Length: §2)

NNV ASENN T 502600300680
H OO OO0 c2cTSataasalom
SR 1R 37 R BF ST M 41 - 4
Bb 68 & 00 00 0 0 W ff B be 4e
Af Bl 5 e2 BA D2 6c 592 M i8
64 95 0 £2 93 92 2a 81 B¢ @2
25 37 W 37 47 A7 AT o o1 6! 57

8 74 b8 65 2¢ OO B2 73 2S ac 48 &0 00 B0

Comparing these two packets side by side, we find that the single-character
modification resulted in 2 of the bytes being changed in the middle of the packet, and
several bytes being changed at the end:

334

6008
6010
©e29
0039
#0234
0050
6030
vo /e

217153
0010
0020
@030
0040
6030 5 72 £2 ©3 63 . .
0050 5 37 57 27 . [N777G5C
YIS 7d b Z¢ @0) F. oW

This demonstrates that our text is not being mapped one-to-one into a packet, and
additional processing is taking place. With this information, we can close Wesnoth and
stop logging packets in Wireshark. However, make sure to keep Wireshark running so
we can grab packet data as we analyze it further.

6.3.6 Packet Modification

Now, let's see how the server responds if we modify a packet. In the last chapter, we
wrote a client that would connect to the server with the username FFFAAAKKKEEE. We
can expand on this code to send a chat message a after we connect.

In Wireshark, click on the first or second packet (the a messages) and select the data.
Right-click and choose Show Packet Bytes:

335

1 9.c0000d 127.9.0.1
3 2.863847 127.0.0.1
5 2.9615%4 12/.9.9.1
7 5.7147%5 127.0.0.1
15 181.825721 127.0.0.1

> Frant 3: 126 bytes o~ wire {1
> Null/Loopbsck

» Inte~net Pratoral Version 4,
» Transmissicn Control Protciol
v DNata [B? hyves)

Conwersaticn Filter
Colonze with Filer
Fo low

Copy

Show Backat Bytes..,
Export Packet Bytes..

Wik Protacn! Prge
Filter Field Reters~ce
Pratacal “refrrences

Dacode As..
Go 1o Linked Packat

Show Linked Packet in New Window

Cul+5nift-C
Corl+ 5 ift-X

Crl+5ift-U

26 39863 » |
psaeass-:
28 39863 » |
33 40863 - |
26 49867 =

interface

Ack: 1, Ler

Datd: 6003Ce4clfIbOSE0000CYUUIETTEDL 04002040 I4TEIC5C2E84D26CY5 129508

[Length: B2]

g8ofafs..

In the window that appears, choose C Array in the Show As section. This will format the
packet's data into an array that can be dropped directly into your code.

M veihart Date dae date - Adepter for bopeck tath: caturs

- a ®

thar sacket _hytec() = ¢

2xd2,
Sxes,
Radz,
axel,
RxaE,
axfl,
Ry,
ox3i,
wesl,
ax2e,
anas,
h

oo,
Sy,
eld,
Sk,
eah,
s,
ese,
qeAz,
e,
Je28,
qoid

Do, Bxde,
e, gaiw,

reze,
exba,
etz
[=T30
Fresdd
Exé?,
Frest,
euib,

Ridm,
Unte,
Ra*,
Uxlia,
Raz?,
gndl,
Hana,
e,

oalr,
cand,
ﬁldr,
ends,
7Y,
exdl,
zhh,
b,
Cahi,
272,

€x32,
Caff,
awAar,
exie,
Qxhe,
exoL,
w25,
LASF,
Qule,
2x14,

20,
b,
ad,
s,
wsh,
e,
T,

insn,
A,

oo,
orle,
remt,
oxbg,
Tz,
Gxde,
e T,
=T
Frehls,
euda,

Fomar £ Que Axmeadiad 23 5

Ceocce e Ko

- Zww o CHMigp

i

Nt

LAl S e e Ao h Send B L A s nsmn bame ol v

336

After we have sent the handshake, version, and username packets, we can add the
following code to send the chat message:

const unsigned char packet_bytes[] = {

0x00, 0x00, 0x00, Ox4e, Ox1f, Ox8b, 0x08, 0x00,
0x00, 0x00, 0x00, 0x00, O0x00, Oxff, Ox8b, Oxce,
0x4d, 0x2d, Ox2e, Ox4e, Ox4c, Ox4f, Ox8d, Oxe5,
Oxe2, 0x84, Oxb2, @Oxbc, @x95, 0x12, @x95, Oxb8,
0x38, Ox8b, @Oxf2, @Oxf3, Ox73, @Oxbd, 0x95, Ox72,
Oxf2, 0x93, 0x92, Ox2a, 0x81, Oxbc, Oxe2, Oxd4,
Oxbc, 0x94, Oxd4, 0x22, Ox5b, @Ox25, Ox37, 0x37,
0x37, Ox47, Ox47, 0x47, Oxef, Oxof, Ox6f, Ox57,
0x57, 0x57, 0x25, Oxae, 0x68, Ox7d, Oxb8, 0x66,
0x2e, Ox00, Ox9b, Ox77, Ox70, Ox1l4, Ox48, 0x00,
0x00, 0x00

s

iResult = send(ConnectSocket, (const char*)packet_bytes,
(int)sizeof(packet_bytes), 0);
printf("Bytes Sent: %ld\n", iResult);

Executing this code will send a chat message just as if we were connected:

ised by Lhe remole hoxl
wllisg thes to logw in.

cnrmslicn nus torcably closed L~, e rarote host

was Topped off

In the section above, we saw that the difference between the a and b chat messages
was a change of 2 bytes. Let's change only the 2 bytes above and see how the server
responds:

const unsigned char packet_bytes[] = {

0x00, 0x00, 0x00, Ox4e, Ox1f, Ox8b,
0x00, 0x00, 0x00, 0x00, 0x00, Oxff,
0x4d, 0x2d, Ox2e, Ox4e, Ox4c, Ox4f,
Oxe2, 0x84, Oxb2, @Ox6c, 0x95, 0x92,

0x08,
0x8b,
0x8d,
0x94,

0x00,
Oxce,
Oxe5,
0xb8,

337

0x38, Ox8b, @Oxf2, @xf3, Ox73, @Oxod, 0x95, Ox72,
0xf2, 0x93, 0x92, 0x2a, Ox81, Oxbc, Oxe2, 0Oxd4,
Oxbc, 0x94, Oxd4, 0x22, Ox5b, @Ox25, 0x37, 0x37,
0x37, Ox47, Ox47, 0x47, Oxof, @Oxof, Ox6f, Ox57,
0x57, 0x57, 0x25, Oxae, Ox68, Ox7d, @xb8, 0x606,
Ox2e, Ox00, Ox9b, Ox77, Ox70, Ox1l4, 0x48, 0x00,
0x00, 0x00

s

Executing the code with this packet will result in the following error from the server:

3% Lopge

e in ceceived dalas Foaleed Lo uncong

Lagred off

This error message, plus how a single letter change results in multiple modifications to
the bytes in the packet, indicates that at least some part of the packet is compressed.

6.3.7 Compression

Compression is the process of taking input data and reducing its size. One of the most
simplistic compression techniques is combining repeating data. For example, the string
AAAAAAAAAA could become 10A. When decompressed, the decompressor would
know to expand 10A back to AAAAAAAAAA. There are multiple ways to compress
data, with some popular formats being ZIP and RAR. Just like executables are always
distinct from other data (like pictures), different compression formats are distinct from
each other.

Wesnoth is a multi-platform game that supports Windows and Linux. Therefore, we
know that whatever format being used must run on both OS's. On Linux-based
systems, two of the most popular compression formats are gzip and bzip2. We will start
our investigation with these formats.

Windows' default command prompt does not have good support for data operations.
To help us investigate, we will use another terminal emulator called Cmder. We will also
install the gzip package. Both of these can be installed using Chocolatey in Powershell:

choco install cmder -y
choco install gzip -y

338

To test out the two compression techniques, create a text file named test.txt. In this file,
add a single line of text. Next, open up Cmder (C:\Tools\Cmder.exe) and navigate to
the directory with this text file. Run the following command to create a gzip'd version

of the file:

gzip test.txt

By default, gzip will remove the original file. Recreate test.txt in the same way so that
you can then create a bzip'd version:

bzip2 test.txt

You should now have two files: test.txt.gz and test.txt.bz2. We next want to examine
what the bytes of these files look like. To do this, we can use a tool called xxd:

xxd test.txt.gz
xxd test.txt.bz2

Your results should look similar to the following:

Fool Cmader

A xxd test.ixt.

20000000 1f8b 7360 aeab 7465
7874 cdc9 957 52e0

20000020: 89dd 20

A xxd test.t)t.bz

20000000: 425a GE3!) 0 BZhD1AY&SY. .F
20800010: 9251

90000020: ©3cd

Comparing these against one of the packets, you should immediately notice that the
beginning bytes (@x1f8b) jump out in the packet:

339

JUUE @92 VP ©9 UV 45 YU YWY /a S5C 29 49
16 7f 00 00 01 7f 00 €6 ©1 (2 C7 3a

30 €b 9V We
201€ 83 ¢5 fa b2
2026 2

2036 IlF 8bh a8 00
LDl . 41 ou €5
UM T3 6d 95 72
LIS 0 25 37 37
ELEEGR 7d b8 66

RTS8 s

This indicates that part of the packet may be compressed with gzip. We can validate
this by attempting to decompress an actual packet. In Wireshark, select a packet, right-
click on the data, and choose Copy -> Value:

TR T14988 127.9.4.1 127.4.5. Folow "M, MK Segzrag
15 132.926721 127.0.0.1 127.9.8. Copy > A1l Vis e borms
22 356.615233 127.9.8.1 127.9.0. .
oy o - - . - = ; L Bl Ve o S
21 56.620:21 127.4.9.1 127,606 Show Fackat Oytes Cd=Shét=13

- = Sascriatce
26 35A.621422 177.4.4.1 127.3.6. Fapoxt Fac bt Fyles ol =Shift=%

23 356.TE0014 127.90.3.1 127.8.8. - =
Wia Pctacal Fage alue

Fiter Findd Seferarce

;::;;l:;p;::kugtc. on wirs (160F Eits), 125 bytes 0 L , £ Fller
Trterrat Protocal VYersian 4, Secd 127.6.8.1, Date Decode As_ Ctd=5hit-U Copy M acHi
Transnission Cont~ol Protozol, Sre Moct: 43362, D Go % Linked Facket o Hes Davn
Data (82 b’)".tlj i Show Linkad Paciet in Nes Windon s Frodablb Ter
Jata: ©oe000el HEOl0COICENNNTTIacetdiciee vt Hiw Shiwar
[Lengzh: 32) . Faw E rary

. Escaped Stn

We can use xxd again to turn this data into a gzip'd file. To do this, we will first print the
data to the terminal using the command echo. However, instead of only printing, we
will pass this printed text to xxd via the pipe operator (). We can then use the -r switch
to tell xxd to reverse the operation (or create a file from the hex), and the -p switch to
tell xxd to read from whatever is typed in, in this case the echo command. Finally, we
use the redirection operator (>) to save this to a compressed file:

echo "1f8b@8..... "I xxd -r -p - > file.gz

We can then decompress this file using gzip:

gzip -d file.gz

340

This will produce a text file named file. Viewing this file, we can see structured data
representing our chat message:

N\ acho "1f8boR2020ama20200ffAbredd2:02ededcdf8deSe284h2E6c 8512950838 AL
r -p > file.gz

r leor

N 2zip -d file.gz

N cat file

:m*"'wwf_ﬁ]
nessage="a’
rcom="lokby ”

sender="FFFALOKKKESE"

6.3.8 Packet Structure

We now know that the majority of the packet contains compressed data, but there is
still one piece of the packet we have not reversed yet. Looking at the packet again, we
can see that the data 0x00 00 00 4e comes before the compressed section:

B AUERS o+ 1500 [Pad, AOx] Segel Ack=1

1 B, BEREED 12061 127.9.6.1 w

M. RaIRAT T T 1.em 137.9.6.1 o TIB ASERS = 1508 [254, £0<] SeqeRi Aokl
5 .680850 120,881 137.9.6.1 {7 IR ASERE = 1588 [254, £0«] Segzihs k=
2 5.214756 122.0.8.1 127.9.6.1 ® 11 ASRGS - 10000 [9SH0, 404] SAq-279 feke

Frose 9: 126 hytex on wire (1080 kitx), “206 hytes capturec (1828 bitc) oo interfaca \fevica b f oaccack, 2 0
Null/Locpback
Internet Frotoccl versizcn 4, Src: 127.€.8.1, Ost: 127.2.0.1
Tranzsizzicn Contrcl Protoccol, Src Port: 30863, Dot Peort: 15000, Soqr 83, Ack: 1, et 82
~ Jota 182 bytes)
Doto. EOECCICLISLCECCOM CCCECOOH HELCOII 10 2edod 4+ ECCSClZ40TnI0s 1100220282,
[fength: a2)

€1 BC o€ 22 a5 ee 'O

30 ZD 42 BO B2 2C 0O g2 -zl
Tf €€ b9 0L FF 88 €€ 5

€T 33 € 33 ¢ fo w2

RS
LS

341

If we convert this @x4E into decimal, we get the value 78. Examining the length of the
data section of the packet, we see that it is 82. From this we can deduce that the first 4
bytes of the packet are responsible for holding the size of the compressed data. With
this, we have all the information we need to create our own packet.

6.3.9 Creating a Packet

Now that we have reversed a packet, we can use the opposite steps to create our own.
In this case, let's create a chat message that says z from our chat message that said a.
Take the file produced from our steps above, and change the message to z:

"

A cat file

[message]
musseape="¢"
rocms"’
sernder="FFFAAMEKKEEE"

[/message]

Next, we are going to gzip this file. We can then use xxd to print out its byte
representation. By using the -i flag, xxd will display this data in a format that we can use
in our code:

]
e
i

A

1
I
un=zigned 1ot

342

We can place this data into our code like before:

const unsigned char packet_bytes[] = {

1

0x1f, 0x8b,
Oxb6c, 0x65,
0Oxe5, 0Oxel,
Oxf3, 0x73,
0xd4, 0Oxbc,
0x47, Oxof,
0x66, 0Ox2e,

0x08,
0x00,
0x84,
oxod,
0x94,
Oxof,
0x00,

0x08,
0x8b,
0xb2,
0x95,
0xd4,
Oxof,
Oxf3,

0x16,
Oxce,
oxoc,
0x72,
0x22,
0x57,
0x40,

0x8a,
0x4d,
0x95,
oxf2,
0x5b,
0x57,
Oxda,

0x73,
0x2d,
Oxaa,
0x93,
0x25,
0x57,
Ox7c,

0x60,
0x2e,
0x94,
0x92,
0x37,
0x25,
0x48,

0x00,
Ox4e,
Oxb8,
0x2a,
0x37,
Oxae,
0x00,

0x0b
0x4c,
0x38,
0x81,
0x37,
0x68,
0x00,

0x66,
Ox4f,
0x8b,
Oxbc,
0x47,
Ox7d,
0x00

0x69,
0x8d,
oxf2,
Oxe2,
0x47,
0xb8,

If you examine the chat messages so far and our newly generated message, you may
notice that there is a difference:

02 62 90 22 45 00 GG 7a 5d 20 40 GO

29

01 7f 62 @2 21 7 00 €6 @1 <2 7 fa
20820 A_5 a8 27 f8 A5

aAR30
aARaQ
9850
2060
2070

33 ¢8

All the other chat messages used by the game have 0x@0..ff in between 0x08 and
0x8b. By contrast, our message has what appears to be random data. To fix this, we
can simply replace these bytes with values that we know work from the game:

const unsigned char packet_bytes[] = {

1

0x1f, 0x8b,
0x4d, 0x2d,
0x95, 0xaa,
0xf2, 0x93,
@x5b, 0x25,
0x57, 0x57,
Oxda, 0x7c,

0x08,
0x2e,
0x94,
0x92,
0x37,
0x25,
0x48,

0x00,
Ox4e,
0xb8,
0x2a,
0x37,
Oxae,
0x00,

0x00,
0x4c,
0x38,
0x81,
0x37,
0x68,
0x00,

0x00,
Ox4f,
0x8b,
Oxbc,
0x47,
0x7d,
0x00

0x00,
0x8d,
0xf2,
Oxe?2,
0x47,
0xb8,

0x00,
0Oxe5,
0xf3,
0xd4,
0x47,
0x66,

0x00,
Oxe2,
0x73,
Oxbc,
Oxof,
Ox2e,

Oxff,
0x84,
0xed,
0x94,
Oxof,
0x00,

0x8b,
Oxb2,
0x95,
0xd4,
Oxof,
0xf3,

Oxce,
Oxéc,
0x72,
0x22,
0x57,
0x40,

This also has the effect of shortening the data. Finally, we need to add the length to
the front of the packet. Since it is a single letter, we know that it will be @x4e:

343

const unsigned char packet_bytes[] = {

0x00, 0x00, 0x00, Ox4e, Ox1f, Ox8b, 0x08, Ox00, 0x00, 0x00, 0x00, 0x00,
0x00, Oxff, Ox8b, Oxce, Ox4d, 0x2d, Ox2e, Ox4e, Ox4c, Ox4f, Ox8d, Oxe5,
Oxe2, Ox84, Oxb2, @xbc, 0x95, Oxaa, 0x94, Oxb8, 0x38, @0x8b, Oxf2, Oxf3,
0x73, Oxbd, @x95, Ox72, Oxf2, 0x93, 0x92, Ox2a, Ox81, @xbc, Oxe2, Oxd4,
Oxbc, 0x94, Oxd4, 0x22, Ox5b, Ox25, Ox37, 0x37, Ox37, Ox47, Ox47, Ox47,
Ox6f, Oxof, @Oxof, @x57, Ox57, Ox57, Ox25, Oxae, Ox68, @0x7d, Oxb8, 0x606,
Ox2e, Ox00, Oxf3, 0x40, Oxda, Ox7c, 0x48, O0x00, 0x00, 0x00

+s

With these changes, we can build and execute the code. The resulting program will
connect to the server and send the chat message z, proving that we now know the
structure and can create our own packets:

| oo Poapt mescthed oo

Aing accaptel versicn

LSINE accaptec

e lugged o

344

6.4 Creating an
External Client

6.4.1 Target

Our target in this chapter will be Wesnoth 1.14.9.

6.4.2 |ldentify

In the previous chapter, we reversed the structure of a Wesnoth chat packet and
identified the steps needed to reverse and create chat packets for the game. In this
chapter, we will expand on this work to create a chat bot, a type of bot that will wait for
and respond to certain commands.

6.4.3 Understand

In the previous chapter, we determined that the process to reverse a packet went like
this:

1. Retrieve the packet's data.
2. Split the data into two sections: size and compressed content.
3. Decompress the second section.

We used that technique on a chat packet and retrieved structured data that looked like:

[message]
message="a"
room="1obby"
sender="FFFAAAKKKEEE"
[/message]

345

Once we retrieved this data, we could make modifications and use a similar process to
create a new packet:

1. Compress the data section.
2. Add the section's length to the front of the data section.
3. Send the packet with the new data.

Since we can write both of the above processes out as a series of concrete steps, we
can create a program to automatically perform them for us. In the retrieval process, we
can analyze the content of each retrieved packet and look for certain characters. If we
identify these characters, we can act on them.

6.4.4 ZLib Installation

The data in the packets was compressed using gzip. While we could write our own
functions to manage gzip'd data, there are external libraries that already provide
functionality to compress and decompress gzip'd data in C++. External libraries
generally contain two parts: header files to include in your code, and library files that
contain the actual code. For this chapter, we will use a library called ZLib. Most of these
libraries require additional installation steps to fully work, including ZLib.

To set up ZLib, first download the Complete package installer from their site under the
zlib for Windows 9x/NT entry. Once installed, it should create a directory at C:\Program
Files (x86)\GnuWin32.

This installation placed several header and library files in this directory. To use these, we
need to include them in our Visual Studio project. Open up Visual Studio and create a
project. Once created, right-click on the project file and choose Properties:

346

https://zlib.net/
http://gnuwin32.sourceforge.net/packages/zlib.htm

Marage NuCet Pickajes

Cat vt Shurhip Parjart

Debug

Dependesciet o
Load Entre Deperdency

Resian Solutor

First, we will make sure that our project can find the ZLib include files. In the properties
dialog, choose C/C++ -> Additional Include Directories -> Edit:

»aton Yarace

. ' s ' Addrtora Incude Dincicses WA ZY LW ir I rclede % |AddtonsiindudeDinctaren

rwwd W3]

L AN

Add ticeal Ivchude Biretores

347

In the dialog box that appears, choose the New folder icon and browse to C:\Program
Files (x86)\GnuWin32\include:

Additional Include Directories ? .4

> QI 2

C:\Program Files %28x86%29\GnuWin32\include

Evaluated value:

CA\Program Files (x86)\GnuWin32\include
%(AdditionallincludeDirectories)

Inherited values:

[\“] Inherit from parent or project defaults Macros> >

[OK ‘ Cancel

We can now include zlib.h inside our code, and the build process will be able to locate
the file. However, as we have seen in previous chapters, header files generally only
contain function definitions and do not contain the majority of code. In ZLib, this code
is stored in library files. We will include these library files in a similar manner.

Select Linker -> General and then select Additional Library Directories -> Edit:

348

Coeligquraban

Hot “eaperty S

Aetive Dok)

d Coehguralion Sapetie
Ganeral
Adtvanoerd

v Pl

DulpeAF o

Slevr Yecpemn

ArtweNin A -

U NS Trgethame] §Tarce)
Nal Sel

Configuration Manager.

Neraon

Debaming Enable kcmnwe ! Liking Yos [NCREMENTAL)

'C++ Directzries Supswes Siartup Gaaner s YNCLOG)

i+ Igvore Import Ubeary o

Laar Megister Sutsut ey

Cenee Bos 1 cas Secknct .
Hrromt Additiceal Likrary Direciones ﬂmasﬁmﬂ‘,ﬁnuWinar.lib:%fﬁdl‘ﬁbmlllih’ul’mrrmm-a] -
tanifes. Fle Ling Lk Deomndenae: il »
Debugg % Usw Libear, Dopercancy ngats oodw it oo 23t o project defaclt s
?‘v' 2l U< Statuz
SpRimEten Freant O Erd v
Embedced DL Trew: Linke Wamirg ds Eras
Wi eloas Mol Feree File Curput .
‘.'J-:ll'\.k" Ui Het Satckod de lisacge
Al Cptiors

= Spccy Sccton Mirbatcs
Lamnmantd Lre

Maadest lec

ML Dezuvart Gencrator
Esonse Infamatior

Ea 2 Evants

Custoen Suild Slep

Code Aodyse

Addteral Likrary Dirceteries
Al Ihe uzer to owcride the ewircnmental [y ook, JUE AT o)

OF Canzel Azl

Like we just did, choose the New folder icon. This time, supply the path to the library
folder at C:\Program Files (x86)\GnuWin32\lib:

Additional Library Clrectorias

()
o

S v ot

C\Program “iles %20xBIR2MEnuWini2 o

Fvahmes walus:

LiFragram §iles (285 \LnuWins 2 b
%lAdditionalliz-sryDirsctories) I

Inhodtad valurs:

< Inhzrit from parent or preject cofaults ASErASs S

(¢14 Coancel

349

Now that we have loaded the library folder, we need to include the actual .lib file. In
Linker -> Input, select Additional Dependencies and add zlib.lib in the dialog that
appears:

wratdol Frogery Fagss

ardiquraticne Ao D aag) - atarrc Schwddinid) ' Savfgamion Masager,
4 Canfgaraticr Frogertins A ond Doaw s benoes clibl iy ¥[Add Lora Degendercies)

Geneta Gania Al olelt Ll e

Miancec oo Spec e Bela b Libanes

Colae g Vedale Satinihian -ike

o=+ D mestarieg Adcd Module 10 Adlamidy

C+e mbed Varaqes kescace F e
4Lnke Tes Szl Reters vies

Goraal Deay Leaded Clls
oot [—

Maniloet Bl

Lrbugonrs

NI Utiang
Coewnand Line
PAariray Taol

N Docume e Saaesice

Mditigra Dependanc es

Spoerfies szl rteres 80 el B the ink tommane ine e ceme 52 k)

QK Cance

With all this setup done, we can now include ZLib in our code like a regular header:

#include <zlib.h>

However, if we try to build this code, we will get the following build error:

350

If we double-click on this error, we are directed to the following code block:

#if 1 /* HAVE_UNISTD_H -- this line is updated by ./configure */
1include <sys/types.h> /* for off_t */

1include <unistd.h> /* for SEEK_* and off_t */

1ifdef WMS

unistd.h is a Unix specific file. To fix this error, we can change the #if 1 to #if
HAVE_UNISTD _H, like so:

if HAVE_UNTSTD W

With these changes, our program will now build. However, if you run the program, you
will encounter a missing DLL error. To fix this, copy over the zlib1.dll file to the running
directory of your application:

351

We can now build and run programs that contain ZLib functionality.

6.4.5 Sending Data

Now that we can compress data in our code, we can create a function to send a
Wesnoth-structured packet with whatever data we would like. To create the packet, this
function will need our data and the length of this data. To send the packet, we will
need a socket. With these requirements, we can create our function definition:

void send_data(const unsigned char *data, size_t len, SOCKET s) {

Based on the documentation, the easiest way to use ZLib to produce gzip'd data is to
create a file with the compressed data. We can do this using the gzopen, gzwrite, and
gzclose functions. These are similar to the regular file functions fopen, fwrite, and
fclose. In our case, we will create a single compressed file, packet.gz, and write
whatever data is passed into this file:

gzFile temp_data = gzopen("packet.gz", "wb");
gzwrite(temp_data, data, len);
gzclose(temp_data);

We can test our current implementation via:

const unsigned char version[] = "[test]hello[/test]";
send_data(version, sizeof(version), ConnectSocket);

Running this code will produce a packet.gz file in the same directory that you ran the
program from. If you use gzip to decompress the packet.gz file, you will find that it
contains [test]hello[/test], showing that our code works so far.

Our packet needs to contain the byte representation of this file. To retrieve this, we can
read the file as a binary file:

#define DEFAULT_BUFLEN 512

FILE* temp_file = NULL;
fopen_s(&temp_file, "packet.gz", "rb");

352

https://refspecs.linuxbase.org/LSB_3.0.0/LSB-Core-generic/LSB-Core-generic/libzman.html

if (temp_file) {
size_t compress_len = 0;
unsigned char buffer[DEFAULT_BUFLEN] = { @ };
compress_len = fread(buffer, 1, sizeof(buffer), temp_file);
fclose(temp_file);

If you run this code and set a breakpoint after fclose, you will see that the buffer now
contains the byte representation of the compressed file. We can use this to build our
packet. We know that the first 4 bytes (a DWORD) of the packet represent the packet's
size. Since all of the chat packets are small, we only need to write the size to the last
byte of this DWORD. Since buffers start at 0 in C, we reference this position with +3.
We will write the buffer containing the compressed data after that:

unsigned char buff_packet[DEFAULT_BUFLEN] = { @ };
memcpy(buff_packet + 3, &compress_len, sizeof(compress_len));
memcpy(buff_packet + 4, buffer, compress_len);

Next, we will use the code we have seen before to send a packet containing this data:

int iResult = send(s, (const char*)buff_packet, compress_len + 4, @);
printf("Bytes Sent: %ld\n", iResult);

To verify that this method works, we will build off the code we wrote in the previous
chapter. In this code, we sent three packets to connect to the server: an initial
negotiation packet that contained Q's, a packet containing our client's version, and a
packet containing our username.

We can use the same technique that we used to decode chat messages to decode
these packets. For example, the packet containing our version looks like this after
decoding:

[version]
version="1.14.9"
[/version]

Instead of sending the packet's bytes like we were doing, we can use our new function:

const unsigned char version[] = "[version]\nversion=\"1.14.9\"\n[/version]";
send_data(version, sizeof(version), ConnectSocket);

353

If you build and run this code, you will see that our bot will connect in the same way,
verifying that our function works. We can build on this approach to send a custom
username:

const unsigned char name[] = "[login]\nusername=\"ChatBot\"\n[/login]";
send_data(nhame, sizeof(name), ConnectSocket);

Finally, we can use the same method to send an initial chat message when we connect:

const unsigned char first_message[] = "[message]\nmessage=\"ChatBot
connected\"\nroom=\"1obby\"\nsender=\"ChatBot\"\n[/message]";
send_data(first_message, sizeof(first_message), ConnectSocket);

This is the same chat message structure that we observed in the previous chapter.

6.4.6 Retrieving Data

We can now send chat messages. For our chatbot to work, we also need to retrieve
messages from the server and parse them for certain text. For this chapter, we will have
our bot respond to any message that contains \wave with a chat message that says
hello back.

At the bottom of the code from Microsoft is a loop that continuously checks for new
packets. We can modify this to send retrieved packets to our own function, and,
depending on the contents, send a chat message:

do {
iResult = recv(ConnectSocket, (char*)recvbuf, recvbuflen, 0);
if (iResult > @)
printf("Bytes received: %d\n", iResult);
else if (iResult == @)
printf("Connection closed\n");
else
printf("recv failed with error: %d\n", WSAGetLastError());

if (parse_data(recvbuf, iResult)) {
const unsigned char message[] = "[message]\nmessage=\"Hello!
\"\nroom=\"1lobby\"\nsender=\"ChatBot\"\n[/message]";
send_data(message, sizeof(message), ConnectSocket);

¥
} while (iResult > 0);

354

Our parse_data function will take a data buffer and its length, and return true if \wave
is found.

bool parse_dataCunsigned char *buff, int buff_len) {

Like we described above, this function will do the same steps as the send_data
function, but in the opposite order. First, we will extract the compressed data from the
packet and write it to a file:

unsigned char data[[DEFAULT_BUFLEN] = { @ };
memcpy(data, buff + 4, buff_len - 4);

FILE* temp_file = NULL;
fopen_s(&temp_file, "packet_recv.gz", "wb");

if (temp_file) {
fwrite(data, 1, sizeof(data), temp_file);
fclose(temp_file);

With the compressed data saved, we can use the gzopen and gzread to read the
decompressed data into a variable. We will then write this variable to the terminal
using fwrite:

gzFile temp_data_in = gzopen("packet_recv.gz", "rb");
unsigned char decompressed_data[DEFAULT_BUFLEN] = { 0 };
gzread(temp_data_in, decompressed_data, DEFAULT_BUFLEN);
fwrite(decompressed_data, 1, DEFAULT_BUFLEN, stdout);
gzclose(temp_data_in);

Finally, we will check if the data contains the text \wave using strstr. This function
returns a positive value if the second parameter is included in the first parameter. It
returns O if not. Because of this, we can return the value of the search and use that to
signify to our calling code that the text was found:

return strstr((const char*)decompressed_data, (const char*)”\\wave");

The full source code for this chapter is available in Appendix A for comparison.

355

6.5 Proxying TCP
Traffic

6.5.1 Target

Our target in this chapter will be Wesnoth 1.14.9.

6.5.2 Overview

In the previous chapter, we created an external client that would connect to a Wesnoth
server and listen for and respond to specific chat messages. A major downside to this
approach is that we had to reverse the entire authentication process so that our client
could connect to the server. Our goal in this chapter is to create a proxy. This will allow
us to use a regular game client and only intercept and modify the traffic we care about
from the client.

6.5.3 Reason for Proxying

The best way to understand our purpose for creating a proxy is to observe the network
traffic when connecting to a server with two clients on the same host. On your lab
machine, start a Wesnoth server and connect to it with a legitimate copy of the game.
Next, modify the client that we wrote in the previous chapter and remove all the
authentication. Instead, have it simply send a chat message:

freeaddrinfo(result);

if (ConnectSocket == INVALID_SOCKET) {
printf("Unable to connect to server!\n");
WSACleanup();
return 1;

356

const unsigned char first_message[] = "[message]\nmessage=\"ChatBot
connected\"\nroom=\"1obby\"\nsender=\"ChatBot\"\n[/message]";
send_data(first_message, sizeof(first_message), ConnectSocket);

Finally, open up Wireshark and start monitoring for traffic on the local adapter, as we
have discussed in previous chapters. When you start the modified external client, you
should see the following error on the server:

SAWesthd.exe
joived using accepted version 1.14.9
has logged on
e of_jane nurber_of _users 1
rect Y
of S 0 nurber_of _users 1

We are familiar with this error from our initial analysis, so we know that it occurs when
we do not provide a valid handshake. Even though both our game and external client
are running on the same machine, they have different sockets and are treated as
completely separate connections by the server:

357

Okay, use port
51111

Client 1

Client 2

Okay, use port
51112

If we examine the Wireshark traffic from the game client and our external client, we can
observe this behavior. While the game is busy sending traffic on port 51120, we can
see the TCP handshake of our external client on port 51123:

S TI3T0 = L1000 ATK] D10 Mbedl) vl 20 tl e |]
Pl i < % > r - 5 L Ml " 3
s) W2 LIS b B L ©r ¥ 1304 = 1o MK B SNradh o 20002 R
20 .90M35 e 127,940 o TIAET = L0600 [THI] Sears W redT00T Lend WI=i300] Wi-T0 SACK nqu
I 19010 122,993 137,004 wr :non ~ KIIZD T, ACK| Jewed Acte] wheeBih)] Lrwel MOS0 e300 JASK LGOI
RN . 4 A L L. MY <« v AR ~e RPN S -~
FRN LT "I AN 000 L Al t1ae < Ly lll C e AECH] Wimadaivanm Lewas
_ . ! " N i R " . Fadanin . e
- Ll AL SR KGR SIrsl L
Loy = v A - Ny T AN
Frase 200 129 bytes on wire (1032 MIta) . 529 3p%a0 caotured {4052 1) oo Smerfecs “Duvice\ T _Locghect, 14 €
Ml L Lacpheck
) el 1, o ol
Yre 4 f | f Az,) i q: 3 [
1S) T

If we want to intercept and modify a game's client traffic, we will need to use a different
approach.

358

6.5.4 Proxying Traffic

When using TCP, we know that a connection is established between a client and server
after completing a handshake. To intercept and inject our own traffic into this
connection, the easiest approach is to be a man-in-the-middle (MitM) of this
connection.

At this position, we can modify requests from the client before they are sent to the
server, as well as responses from the server before they are sent to the client. This is
commonly known as a proxy, or an agent that simply relays traffic from a source to a
destination. A visualization of this model is shown below:

Hi server, | Hi sewver, |
~vant © want o
sonnect connect

- 1 -

| Sure client

Proxy Proxy
(Servar) (Client)

The key to this model is that our proxy is acting as the server to the client and the client
to the server. This means that the server completes a handshake with our proxy,
allowing us to inject whatever traffic we want. Since we are forwarding legitimate traffic
from the client, we do not need to reverse traffic (such as the authentication
mechanism) because the client will handle that for us.

359

A proxy consists of three main sections of code:

1. A socket to listen for client traffic
2. A socket to send traffic to the server
3. Logic to relay traffic from the client to the server and the server to the client

To simplify this chapter, we will create a proxy that will respond to the \wave event,
identical to the external client we wrote in the previous chapter. For these operations,
the Wesnoth client must send data to the server for the server to respond. When using
a proxy for other operations, additional logic will need to be added in to pass server
traffic to the client.

The full code for this chapter is available in Appendix A.

6.5.5 Listening for Client Traffic

To listen for client traffic, we will create a listen socket. Once we receive a connection,
we will establish a connection with the client. To do this, we can build off the Microsoft
server example:

#define DEFAULT_PORT "27015"

WSADATA wsaData;
int iResult;

SOCKET ListenSocket = INVALID_SOCKET;
SOCKET ClientSocket = INVALID_SOCKET;

struct addrinfo* result = NULL,
hints;

iResult = WSAStartup(MAKEWORD(Z2, 2), &wsaData);

ZeroMemory(&hints, sizeof(Chints));
hints.ai_family = AF_INET;
hints.ai_socktype = SOCK_STREAM;
hints.ai_protocol = IPPROTO_TCP;
hints.ai_flags = AI_PASSIVE;

iResult = getaddrinfo(NULL, DEFAULT_PORT, &hints, &result);
ListenSocket = socket(result->ai_family, result->ai_socktype, result-
>ai_protocol);

360

https://docs.microsoft.com/en-us/windows/win32/winsock/complete-server-code
https://docs.microsoft.com/en-us/windows/win32/winsock/complete-server-code

iResult = bind(ListenSocket, result->ai_addr, (int)result->ai_addrlen);
freeaddrinfo(result);

iResult = listen(ListenSocket, SOMAXCONN);
ClientSocket = accept(ListenSocket, NULL, NULL);
closesocket(ListenSocket);

This will create a socket on port 27015 that will accept a single connection.

6.5.6 Sending Traffic to Server

For sending traffic to the server, we can build off the code that we already discussed in
the previous chapter:

SOCKET ServerSocket = INVALID_SOCKET;

ZeroMemory(&hints, sizeof(Chints));
hints.ai_family = AF_INET;
hints.ai_socktype = SOCK_STREAM;
hints.ai_protocol = IPPROTO_TCP;

iResult = getaddrinfo("127.0.0.1", "15000", &hints, &result);

ServerSocket = socket(result->ai_family, result->ai_socktype, result-
>ai_protocol);

iResult = connect(ServerSocket, result->ai_addr, (int)result->ai_addrlen);
freeaddrinfo(result);

Like we discussed above, our proxy will forward client packets to the server and server
packets to the client. However, not all client packets will require a response from the
server. For example, in Wesnoth, sending a chat message does not require a response
back. To ensure that our proxy does not get stuck waiting for a server response, we
need to set a timeout on the server socket. This timeout will cause any recv calls to fail
after a set amount of time:

DWORD timeout = 1000;
setsockopt(ServerSocket, SOL_SOCKET, SO_RCVTIMEO, (char*)&timeout,
sizeof(timeout));

361

6.5.7 Relaying Traffic

With both of our sockets created, we can now focus on relaying the traffic between the
client and server. Since Wesnoth does not send out server responses unless a client
sends a request, our proxy can be simplified to the following events:

Wait for a request from the client.

Send that request to the server.

Wait for a response from the server.

If a response comes back, send to the client. Otherwise, start waiting for the
next client request.

AW N =

After each event, our program will sleep for a short period to ensure that the traffic
between the client and server does not get desynchronized. First, we will wait for a
request from the client:

#define DEFAULT_BUFLEN 512

int iSendResult;
unsigned char recvbuf[DEFAULT_BUFLEN];
int recvbuflen = DEFAULT_BUFLEN;

do {
iResult = recv((ClientSocket, (char*)recvbuf, recvbuflen, 0);
Sleep(100);

If we retrieve a request, we pass this data to the server:

if (iResult > @) {
printf("Bytes received: %d\n", iResult);

iSendResult = send(ServerSocket, (char*)recvbuf, iResult, 0);
Sleep(100);
printf("Bytes sent: %d\n", iSendResult);

Next, we wait for a response from the server. If a response actually comes back, we
forward this on to the client:

iResult = recv(ServerSocket, (char*)recvbuf, recvbuflen, 0);
Sleep(100);

362

if (iResult !'= SOCKET_ERROR) {
iSendResult = send(ClientSocket, (char*)recvbuf, iResult, 0);
Sleep(100);

Finally, we continue the loop while we have a result, or if we have a timeout from the
server:

} while (iResult > @ || WSAGetLastError() == WSAETIMEDOUT);

At this point, our proxy will properly pass traffic from a client to a server. We can verify
this by running the proxy, connecting to it in Wesnoth by setting the server to
localhost:27015, and confirming that we can connect to the actual server running on
localhost:15000.

As a proof-of-concept, we can now add in logic to intercept and modify traffic. First, we
can import our parse_data and send_data functions from our last chapter. Next, we
will modify our main loop to check any client requests and see if they contain the chat
message \wave. If so, we will send an additional packet with a Hello! message:

if (iResult > 0) {
printf("Bytes received: %d\n", iResult);
if (parse_data(recvbuf, iResult)) {
const unsigned char message[] = "[message]\nmessage=\"Hello!
\"\nroom=\"1lobby\"\nsender=\"ChatBot\"\n[/message]";
send_data(message, sizeof(message), ServerSocket);
Sleep(100);

If you connect to the proxy now and send the chat message \wave, you will see that an
additional message appears on the server, indicating that we successfully injected
traffic into the connection:

363

Y rreyUamat

*8 Pelmencet

16,1 YR I T

all 2 server 0.0, player joined usirg accepred
ersion 1. 3. ! e t°
or ., TFlSar s legned na
erve 0, ! > hells
server .0,) > nellc!
server: 127.0.0. 1EU > ¢

364

Part /

Tool
Development

7.1 DLL Injector

7.1.1 Target

When writing a DLL injector, it is helpful to have an already working DLL for a particular
target. For this chapter, we will use the memory wallhack we produced in Chapter 5.2.
While our injector will be built for the game Urban Terror, we will be able to easily
modify it for other targets in the future.

7.1.2 Overview

In previous chapters, we used Windows' Applnit functionality to inject DLLs into game
executables. While this approach works well for testing, it has several drawbacks:

* Applnit_DLLs needs to be updated for each new DLL.

* Applnit_DLLs are injected into every started process.

» Secure Boot has to be disabled.

* Applnit_DLLs will only be injected into processes that load user32.dll.
. DLLs are loaded into the process at a set time, outside of our control.

To get around these drawbacks, we will write an injector, which will manually load our
DLL into the game executable.

7.1.3 Concepts

To load static and dynamic libraries, Windows executables can use the LoadLibraryA
API function. This function takes a single argument, which is a full path to the library to
load.

HMODULE LoadLibraryA(
LPCSTR 1pLibFileName
J;

If we call LoadLibraryA in our injector's code, the DLL will be loaded into our injector's
memory. Instead, we want our injector to force the game to call LoadLibraryA. To do

366

https://docs.microsoft.com/en-us/windows/win32/api/libloaderapi/nf-libloaderapi-loadlibrarya

this, we will use the CreateRemoteThread API to create a new thread in the game. This
thread will then execute LoadLibraryA inside the game's running process.

However, since the thread is running inside the game's memory, LoadLibraryA will not
be able to find the path of our DLL specified in our injector. To get around this, we
have to write our DLL's path into the game's memory. To ensure that we do not corrupt
any other memory, we will also need to allocate additional memory inside the game
using VirtualAllocEx. The full breakdown of this interaction looks like:

Injecior

VirtualallocEx

WrileProcessMemory -~ C : Thread

CreateRemoteThread ——
' : oadLibraryA{
C:\Path\hack.dll

As we know from previous chapters, we will need a process handle to interact with an
external process. For example, in Chapter 3.2, we used FindWindow and
GetWindowThreadProcessld to retrieve a process identifier. This approach has many
drawbacks and is not recommended beyond quick testing. Instead, we will use
CreateToolhelp32Snapshot.

7.1.4 Process ldentifier

To use WriteProcessMemory, we will need a handle to the Urban Terror process.
Instead of using FindWindow like we did previously, we will use
CreateToolhelp32Snapshot. This APl takes a snapshot of all the currently running
processes on the machine. Each process in this snapshot can then be examined using

367

https://docs.microsoft.com/en-us/windows/win32/api/processthreadsapi/nf-processthreadsapi-createremotethread
https://docs.microsoft.com/en-us/windows/win32/api/memoryapi/nf-memoryapi-virtualallocex
https://docs.microsoft.com/en-us/windows/win32/api/tlhelp32/nf-tlhelp32-createtoolhelp32snapshot

Process32First and Process32Next. Microsoft provides a good example of how to do
this here.

While Microsoft's example iterates all processes and dumps their loaded modules, we
are only interested in finding a single process and retrieving its process identifier.
Therefore, we can simplify their example code:

#include <windows.h>
#include <tlhelp32.h>

int main(int argc, char** argv) {
HANDLE snapshot = 0;
PROCESSENTRY32 pe32 = { 0 };
pe32.dwSize = sizeof(PROCESSENTRY32);
shapshot = CreateToolhelp32Snapshot(TH32CS_SNAPPROCESS, @);
Process32First(snapshot, &pe32);
do {
} while (Process32Next(snapshot, &pe32));

return 0;

Each process entry contains two fields that we care about: szExeFile and
th32ProcessID. The former contains the name of the process, like svchost.exe or
notepad.exe. The latter contains the process identifier of the process that we can pass
to OpenProcess.

The process name of Urban Terror is Quake3-UrT.exe. This can be identified by
viewing the process list in Task Manager while Urban Terror is running. To compare this
value to the value in szExeFile, we can use the function strcmp. This function takes two
strings and returns 0 if they match:

do {
if (wcscmp(pe32.szExeFile, L"Quake3-UrT.exe") == 0) {

}

368

https://docs.microsoft.com/en-us/windows/win32/api/tlhelp32/nf-tlhelp32-process32first
https://docs.microsoft.com/en-us/windows/win32/api/tlhelp32/nf-tlhelp32-process32next
https://docs.microsoft.com/en-us/windows/win32/toolhelp/taking-a-snapshot-and-viewing-processes
https://docs.microsoft.com/en-us/windows/win32/api/tlhelp32/ns-tlhelp32-processentry32

7.1.5 Process Handle

When these strings match, we know that pe32.th32ProcessID must contain the
process identifier for the running instance of Urban Terror. We can pass this value to
OpenProcess just like we did in previous chapters:

HANDLE process = OpenProcess(PROCESS_ALL_ACCESS, true, pe32.th32ProcessID);

7.1.6 Allocating Memory

Next, we need to allocate memory inside of Urban Terror to store the full path of our
DLL. To do this, we will use VirtualAllocEx, which is defined as:

LPVOID VirtualAllocEx(
HANDLE hProcess,
LPVOID 1pAddress,
SIZE_T dwSize,
DWORD flAllocationType,
DWORD fl1Protect

);

Going through the arguments, hProcess will be the process handle we obtained from
OpenProcess. I[pAddress will be NULL, since we do not care where the address is
allocated. dwSize will be the length of the path to our DLL. Since we want to allocate
memory and have it be usable, we will choose MEM_COMMIT as the allocation type.
Finally, since we want to write to the allocated memory, we will specify the protection
as PAGE_READWRITE.

VirtualAllocEx will return a void pointer containing the address that our memory is
allocated at. Since we will need this value for our next call to WriteProcessMemory, we
will have to create a variable for it. We will also need to create a variable for the full
path of our DLL. Due to how C++ interprets backslashes, we need to use two \'s for
each single backslash. With all these parameters worked out, we can add the following
code:

const char *dll_path = "C:\\Users\\IEUser\\source\\repos\\wallhack\\Debug\
\wallhack.dll";

369

void *1pBaseAddress = VirtualAllocEx(process, NULL, strlen(dll_path) + 1,
MEM_COMMIT, PAGE_READWRITE);

7.1.7 Writing the DLL Name

With our memory now allocated, we can write our DLL name into Urban Terror's
memory using WriteProcessMemory. The base address for writing will be the address
that we retrieved from VirtualAllocEx:

WriteProcessMemory(process, lpBaseAddress, dll_path, strlen(dll_path) + 1,
NULL);

7.1.8 Creating the Thread

With our DLL's path written into the game's memory, we can create a thread to execute
LoadLibraryA to load the DLL into the game. We will use CreateRemoteThread to
create the thread, but first, we need to obtain the address of LoadLibraryA.

LoadLibraryA exists inside kernel32.dll. Windows takes care of loading this DLL into all
processes that need any AP| contained inside kernel32.dll. To obtain the address of
LoadLibraryA, we can use GetProcAddress. This APl requires a handle to the DLL that
contains the function, in this case kernel32.dIl. We can get this handle using
GetModuleHandle:

HMODULE kernel32base = GetModuleHandle(L”kernel32.d11");

Now we can use CreateRemoteThread to load our DLL. CreateRemoteThread's
definition looks like:

HANDLE CreateRemoteThread(

HANDLE hProcess,
LPSECURITY_ATTRIBUTES T1pThreadAttributes,
SIZE_T dwStackSize,
LPTHREAD_START_ROUTINE 1pStartAddress,
LPVOID lpParameter,

DWORD dwCreationFlags,
LPDWORD 1pThreadId

),

370

https://docs.microsoft.com/en-us/windows/win32/api/libloaderapi/nf-libloaderapi-getprocaddress
https://docs.microsoft.com/en-us/windows/win32/api/libloaderapi/nf-libloaderapi-getmodulehandlea
https://docs.microsoft.com/en-us/windows/win32/api/processthreadsapi/nf-processthreadsapi-createremotethread

Let's step through each parameter required. The process will be the process handle for
Urban Terror, identical to WriteProcessMemory. The next two parameters we do not
need, so we can pass NULL and O for them. Our start address will be the address of
LoadLibraryA that we retrieve through GetProcAddress. Finally, we need to pass a
single parameter to LoadLibraryA, our DLL path, which we know from our call to
VirtualAllocEx. For the purpose of our injector, we can ignore the last two parameters
as well. With all of this down, our call ends up looking like:

HANDLE thread = CreateRemoteThread(process, NULL, 0,
(LPTHREAD_START_ROUTINE)GetProcAddress(kernel32base, "LoadlLibraryA"),
1pBaseAddress, @, NULL);

We have some additional operations we need to do with our thread, so we will save a
handle to the thread. Before exiting, we want our injector to wait until the thread has
been created and finished executing. We can do this via WaitForSingleObject and
GetExitCodeThread:

WaitForSingleObject(thread, INFINITE);
GetExitCodeThread(thread, &exitCode);

7.1.9 Clean Up

Finally, we can free up the memory we allocated and close the open handles we have
after our DLL has been injected:

VirtualFreeEx(process, lpBaseAddress, @, MEM_RELEASE);
CloseHandle(thread);

CloseHandle(process);

break;

The final break exits the loop that we created to scan through each process.

With all of this done, we can start Urban Terror, enter a game, and then run our injector.
If everything went successfully, players will start appearing through walls, indicating
that our DLL was injected. If it fails, make sure to run the injector with administrator
permissions.

The full code for the injector is available in Appendix A.

371

https://docs.microsoft.com/en-us/windows/win32/api/synchapi/nf-synchapi-waitforsingleobject
https://docs.microsoft.com/en-us/windows/win32/api/processthreadsapi/nf-processthreadsapi-getexitcodethread

7.2 Pattern Scanner

7.2.1 Target

Our targets in this chapter will be Wesnoth 1.14.9 and Wesnoth 1.14.12.

7.2.2 Overview

In Chapter 2.3, we located the sub instruction responsible for subtracting gold from our
player when we recruited a unit. In the 1.14.9 version of the game, we located this
instruction at @x7CCD9E:

.

R ptr

vax Jeord L:LT
wy Jdeurd ptr ss. 2
10y _dwerd prr_ss:labp

If a game's code is not loaded dynamically, addresses for instructions will not change.
As such, we can consistently use them when programming. We used this behavior
across several targets to build code caves, such as in Chapter 3.4.

However, newer versions of Wesnoth have been released, like 1.14.12. This version can
be installed using Chocolatey in the same way we installed version 1.14.9:

choco install wesnoth --version=1.14.12 -y

Most games will continually release additional versions and require updates to continue
playing on multiplayer servers. If we examine @x7CCDIE in Wesnoth 1.14.12, we see
that the sub instruction is no longer there:

372

C7C424 02000000
8230 40FCFFFF
8u0D 48FCrrrr
EE BECAFNFF

' 8 RRAS5 FAFRFFFF
00 /CCDUL g=CC U8
. L7l 84S 1CFLUFFFF 2O\

AnAn ABFFFFFF lem acx , dware
CeL0 C1 10N otr
8235 3I8FCFFFF : 2
c740 10 CoonNdOD
C/16 310 FFFFFFFF
EE 37
3129

When developers introduce new features or fix bugs in each release, they modify the
game's code. They then compile these changes to produce a new executable for the
game. Since this new executable has different code, the location of all code in the
game will change. This is why the sub instruction is no longer present at @x7CCDOE in
version 1.14.12.

7.23 Opcodes

If we wanted to find the new address of the sub instruction, one approach is to repeat
the exact same method we used in Chapter 2.3. If we do this, we can identify that the
sub instruction in 1.14.12 is located at @x7D177E:

F73FAFF wasroTt o
SEFCFFFF 7002000 1m eav ,dacrd ptr
1CFCFFFF noA ydword ptr

-
~

IMmyY ™

7ErCrrr nov dword ptr
LC JVv CCAJUWJIIU U
04 sub dword ptr d

inereeee OO

q
3%
90
10&
9C2
(.3(
o4s
94z
Osn

3

v laa il
v ¥

It o

NRY A

SD8E QE FDEEEE 2a eax .dword

However, if we wanted to then upgrade our hack to a newer version, like 1.14.15, we
would have to repeat this process again. This is a time-intensive process, especially for
more complex tasks, like locating a player's base pointer.

Back in Chapter 1.1, we covered operation codes, or opcodes. Each opcode represents

an instruction to execute. x64dbg displays the opcode for each instruction in the
column to the left of the instruction:

373

COTCCDOE 2942 o b dw

S werd p

dwerd ptr
gax Jeord
Jrurd pUr
dwerd prr :

For example, the opcode for the sub instruction we identified is @x2942 04.

Executables do not store their code as assembly instructions. Rather, they store it as
opcodes. The disassembly observed in x64dbg is reconstructed from these opcodes.
We can verify this by opening up wesnoth.exe in a hex editor, a type of program that
displays the hexadecimal bytes of a chosen file. In this chapter, we will use HxD:

choco install hxd

After opening wesnoth.exe, we can search for the opcode identified above via Search
-> Find:

WA - [\..'\I"fk)k’ldl“ FHES (AQUNDALUE 1O VWEDTIULIT 1,19, 18 \WESIHTULNLTEAY |

i File Edit RN View Analysis Tools Window Help

AR Find S Hows (ANSI) v|| hex
) .. Replace... Ctrl+R
¥ - ~ MOD
w| wesnoth.g
Find again F3
Offset (R) Find again (reversed) Shift+F3 05 OA OB OC OD OE
00000000 . . . 00 FF FF 00
e (o to... Ctrl+G
00000010 00 00 00
00000020 00 00 D0 00 00 00 00 00
00000030 00 00 00 00 00 00 C 80 00
00000040 OE 1F BA OE 00 B4 09 CD 21 B8 01 4C CD 21 54
00000050 69 73 20 70 72 6F 67 72 61 €D 20 63 61 6E 6E
00000060 74 20 ©2 ©5 20 72 75 ©6E 20 €9 6E 20 44 4F 53
27aTaTaTaTalaFa ~™ | — ~ A -~ ~Qar ™ % o - -~ A 2T ‘ala ‘2l

374

In the dialog that appears, we want to search for the hex value of our opcode:
Find X

Text-string Hex-values |nteger number Floating point number

Search for: 294204 v

Search direction
O Al
(@) Forward

() Backward

OK Search all Cancel

Searching should highlight the opcode value:

J030D0OB=E0 10 59 04 24 31 89 85 88 FC F7 FT EE SF 73 Fa L.5108% 17y=TYsO
2o300BeD FF 9 €5 58 FC FYT FF J 092 J0 00 BB 9D 4C FC FF 91 XuUuyyp...<.luy
Jo30op70 FF 01 DO 95 C2 85 70 FC FF F7 0C 45 1c FERRR v.o%A% xiyix:z.)0
cosposeo [f] 20 BD <B FT FF FF 00 74 ED &5 O8 FD FF FF |jewkKayy.cf. .. .00y
JO300BEO 3A 01 00 0C 44 24 04 8D B5 12 FD FF FF 8% °®....RDS.....v7%k
OANORRN N4 24 8% an FF FI 3 A2 F= FF 2R 85 7C Su-tiig¥e.boja |

Looking at the values near the highlighted value, we can see that they represent the
other opcodes near the sub instruction.

7.2.4 Scanning

If we compare the opcodes for the sub instruction between 1.14.9 and 1.14.12, we can
see that they are identical. This is because the opcodes for a particular instruction will
always be the same. Since these opcodes do not change, we can scan for these bytes
to locate the instruction we care about. This is known as pattern scanning.

375

Due to how Windows loads PE files into virtual memory, the address for the instruction
differs between the hex editor and x64dbg. Since we want to locate and alter the
running code, we are interested in identifying the latter address.

To accomplish this, we need to read the memory from a running instance of Wesnoth
and then search that memory for a series of bytes. In this chapter, we will write an
external program to demonstrate the concept, but this same behavior can be used
inside a DLL to automatically update offsets.

Since we want to locate a running process and retrieve a process handle, we can start
with the base that we already discussed in Chapter 7.1:

#include <windows.h>
#include <tlhelp32.h>
#finclude <stdio.h>

int main(int argc, char** argv) {
HANDLE snapshot = 0;
PROCESSENTRY32 pe32 = { 0 };

pe32.dwSize = sizeof(PROCESSENTRY32);
shapshot = CreateToolhelp32Snapshot(TH32CS_SNAPPROCESS, @);
Process32First(snapshot, &pe32);

do {
if (wcscmp(pe32.szExeFile, L"wesnoth.exe") == @) {
HANDLE process = OpenProcess(PROCESS_ALL_ACCESS, true,
pe32.th32ProcessID);

CloseHandle(process);
break;

ks
} while (Process32Next(snapshot, &pe32));

return 0;

With the process handle to Wesnoth, our next goal is to read the process's memory
into a buffer that we can scan. However, processes are made up of many modules, or
sections of code. For example, the Wesnoth process has modules for the main game
code (wesnoth.exe), compression code (zlib1.dll), and graphics code (sdl.dll). We can
observe all the modules loaded into the process using x64dbg's Symbol tab:

376

Base arty
00400000 | | X Lser
0104000C pixr p Usear
(: | User
Systam
systam
veer
user
Lser
LUser
LUser
User
ser
veer
User
User
Systam
LUser
User
User
vser
User
Lser
Systam
LUser
User
tystem
SYSTaem
systam
User
User
Lser
User
User
Lvser
Lvser
User
LUser
System
Systam
systam
system
Lser
System
Lser
Lser

Program
:\Program ¥
AWindows\ ¢
\Windows '\ ¢
\Progran
:\Program
\Program
:\Program
:\Program
:\Program
\Program
\Program
\Program
:\Program
\wWindows '\
:\Program
:\Program
:\Program
VNPrOgmam
i \Program
\Program F
s\Windows'\ ¢
:\Program F
:\Program F
\Windows\¢
\windows'\s
\windows'\s
:\Program
:\Program
:\Program
:\Program
:\Program
:\Program
\Program
:\Program
:\Program ¥
AWIindows '\ ¢
AWindows'\ ¢
\Windows\¢
s \windows'\<
:\Prog
S\wWindows'\§
:\Program F
C:\Progran §

Y WL SRR YR WE AA WY YWY YWY MR MWR W WE WY YW

C
C
C
C
C
C
C
C
c
C
C
C
<
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
¢
¢
C
C
C
C
C

Since our sub instruction is in the wesnoth.exe module, we only want to scan this
memory. To do this, we want to identify the base address of the module and its size.
The CreateToolhelp32Snapshot APl also allows us to iterate over a process's modules

using Module32First and Module32Next:

if (wcscmp(pe32.szExeFile, L"wesnoth.exe") == 0) {
HANDLE process = OpenProcess(PROCESS_ALL_ACCESS, true,
pe32.th32ProcessID);

HANDLE module_snapshot = 0;

377

MODULEENTRY32 me32;

me32.dwSize = sizeof(MODULEENTRY32);

module_snapshot = CreateToolhelp32Snapshot(TH32CS_SNAPMODULE,
pe32.th32ProcessID);

Module32First(module_snapshot, &me32);

do {
if (wcscmp(me32.szModule, L"wesnoth.exe") == 0) {
break;
}
} while (Module32Next(module_snapshot, &me32));
CloseHandle(process);
break;

At this point, the me32 structure will hold a few members that we care about:
modBaseAddr, the base address of the module, and modBaseSize, the size of the
module. We will use these two members to allocate a buffer and read the module's
memory into the buffer:

unsigned char *buffer = (unsigned char*)calloc(1l, me32.modBaseSize);
DWORD bytes_read = 0;

ReadProcessMemory(process, (void*)me32.modBaseAddr, buffer, me32.modBaseSize,
&bytes_read);

//scanning code

free(buffer);

At this point, our buffer contains the content of the memory from the wesnoth.exe
module base to the end of the module. This memory contains the opcodes for the
game's code. We can now scan over this memory to look for our pattern of bytes.

For each byte in the buffer, we will see if the pattern exists starting at the byte. If not,
we will continue on to the next byte. If all the bytes match, we will print the offset in the
buffer combined with the wesnoth.exe module base:

unsigned char bytes[] = { 0x29, 0x42, 0x04 1},

378

for (unsigned int i = 0; i < me32.modBaseSize - sizeof(bytes); i++) {
for (int j = 0; j < sizeof(bytes); j++) {
if (bytes[j] !'= buffer[i + j1) {
break;

}

if (j + 1 == sizeof(bytes)) {
printf("%x\n", i + (DWORD)me32.modBaseAddr);
ks

If we start Wesnoth 1.14.12 and then run our scanner, it will correctly print out the
location of the sub instruction:

gC,

process_sn
module sna|C:\Users\IEUser\source\repos\Patter
SENTRY3Z peTo automatically close the console |

We can use this on any version of Wesnoth to locate the sub instruction we care about.

The full code for this chapter is available in Appendix A for comparison.

379

7.3 Memory Scanner

7.3.1 Target

Our target in this chapter will be Wesnoth 1.14.9.

7.3.2 Overview

In previous chapters, we used Cheat Engine to search for memory addresses and
change their values. Cheat Engine is a type of program known as a memory scanner.
Memory scanners allow you to search for and edit memory inside a process.

Our goal in this chapter is to create a memory scanner that will operate on DWORD
values for the game Wesnoth.

EN'Nivizen PrawShall - a

CUSersL TRUSer \sauree’ ropas YESANNArLehUgs LA\NCHAFYSCARNGTE. &Xe Search
wusersh\IEUsersource’\reposs, vScanneribebugs> cat .\res.txt |selact

106165

11E0F2
116364

users\ Ieuser), L POpe ! ¢ g .ANeNaryscanner.exe filrer 54
\Users\IEUser® ~) : e ugs> cat J\res, txt

‘N

SNenaryScanner.exe write 55°

7.3.3 Understand

Memory scanners have three main operations:

380

1. Search all memory for a certain value.
2. Filter previously identified addresses against a new value.
3. Set a memory address to a certain value.

In the previous chapter, we created a pattern scanner that would search the main
Wesnoth module for a series of bytes. We can use the same technique to search
memory for a value. However, in this case, we will scan all memory from 0x00000000 to
Ox7FFFFFFF. This range of addresses represents all the virtual address space that a 32-

bit Windows executable has access to. When scanning, we will save any address that is
set to a certain value.

To filter these addresses, we will perform the same scan operation described above
with one major difference: instead of scanning from 0x00000000 to Ox7FFFFFFF, we
will only scan saved addresses identified from the previous scan step. Any addresses
that still match a provided value will again be saved. In this way, we can continue to
filter down the list of valid addresses.

Finally, to write to an address, we can use the same WriteProcessMemory technique

identified in Chapter 3.2.

7.3.4 Program Structure

Before we write our program, we need to determine how we will handle the multiple
operations and passing data from one operation to another.

Since we have three distinct operations for our memory scanner to perform, we need
to determine how to handle these cases. One approach is to create a separate
program for each operation and then transfer data between the three programs.
However, this approach would require us to duplicate logic between multiple
programs, such as the logic to open a process handle.

For this chapter, we will use command-line arguments to designate which operation we
want to perform. For example, if we want to search for the value 50, we will call our
program like:

MemoryScanner.exe search 50

Since we need to call our scanner multiple times, we need a way to pass results from
one operation to the next. The easiest way to accomplish this is to use a file. For
example, if we search for a value, the file will be filled with all addresses that match this

381

https://docs.microsoft.com/en-us/windows/win32/memory/virtual-address-space

value. When we filter, addresses will be read from this file, and then new addresses are
placed in the file if they still match.

7.3.5 Process Handle

To read and write memory from Wesnoth, we need a process handle. We will use the
same approach we used in the previous chapter to accomplish this:

#include <windows.h>
#include <tlhelp32.h>
#include <stdio.h>

int main(int argc, char** argv) {
HANDLE process_snapshot = 0;
PROCESSENTRY32 pe32 = { 0 };

pe32.dwSize = sizeof(PROCESSENTRY32);

process_snhapshot = CreateToolhelp32Snapshot(TH32CS_SNAPPROCESS, @);
Process32First(process_snapshot, &pe32);

do {
if (wcscmp(pe32.szExeFile, L"wesnoth.exe") == 0) {
HANDLE process = OpenProcess(PROCESS_ALL_ACCESS, true,
pe32.th32ProcessID);

// handle operations

CloseHandle(process);
break;

}
} while (Process32Next(process_snapshot, &pe32));

return 0;

We will pass this process handle to all of our operations.

382

7.3.6 Operations

Next, we can add in our operations. To access command-line arguments passed to our
program, we can use the argv argument. argv[0] will always hold our program's name
on the command-line (MemoryScanner.exe), with argv[1] representing the first
argument.

All arguments are passed in as strings. We want our program to search for DWORD
values. To convert from a string to a value that we can use to search for DWORD's, we
will use strtol, or (str)ing (to) (l)ong:

// handle operations
char* p;
long value = strtol(argv[2], &p, 10);

if(strcmp(argv[l], "search") == 0) {
search(process, value);

}
else if(strcmpCargv[1l], "filter") == 0) {
filter(process, value);

}
else if (strcmp(argv[l], "write") == 0) {
write(process, value);

}

With the base in place, we can now write each of these functions.

7.3.7 Search

We will start with our search function:

void search(const HANDLE process, const int passed_val) {

Like we discussed in the previous section, we will store the results of the search in a
text file. Like we did back in Chapter 6.4, we will use fopen_s to create a text file we
can write to:

FILE* temp_file = NULL;
fopen_s(&temp_file, "res.txt", “w");

383

As we know, memory does not have a particular structure. For example, the memory
from @x12345678 to @x1234567C could hold the values @x44 0x45 @x41 0x45. If read
as a DWORD, this memory would hold the value 1145389381. However, if each byte is
read as a char, this memory would hold the value DEAD. In memory scanners like
Cheat Engine, you can select the type of data to scan for. In this chapter, we will scan
all memory as if it was a DWORD. This will allow us to search for values that are
numbers, such as gold.

Our search operation will scan all memory from 0x00000000 to @x7FFFFFFF and
compare each 4 bytes to the value passed in the second argument. Previously, we used
ReadProcessMemory to read a single 4-byte DWORD. However,

ReadProcessMemory allows us to read any size of memory into any type of allocated
buffer.

While Wesnoth can use all memory from 0x00000000 to @x7FFFFFFF, it first needs to
request access via several API’s, like VirtualAlloc. If Wesnoth has not requested access
to a certain piece of memory, it will not be able to read or write data to it. We are using
Wesnoth's handle to read memory, so we will need to account for this behavior.

If we try to read all memory from 0x00000000 to @x7FFFFFFF with one
ReadProcessMemory call, the call will fail. This is because ReadProcessMemory's
behavior is to immediately fail and place a NULL value in our buffer if we encounter a
section of memory we do not have access to. As a result, we will need to split our read
requests up into blocks. That way, if we attempt to scan a block that Wesnoth has not
allocated, only that block's read will fail.

We can choose any value for our block size, but there is a trade-off between speed and
accuracy. The larger each block is, the faster the scan process will take, but more areas
of memory may not be read successfully due to part of the block being inaccessible.
For this chapter, we will choose a block size of 2056, or 9x808:

#fdefine size 0x00000808

We will then allocate a buffer that can hold a block-size worth of data:

unsigned char* buffer = (unsigned char*)calloc(1l, size);

Next, we will loop through each block of memory from 0x00000000 to Ox7FFFFFFF
and read that block into the buffer:

384

DWORD bytes_read = 0;

for (DWORD i = 0x00000000; i < Ox7/FFFFFFF; i += size) {
ReadProcessMemory(process, (void*)i, buffer, size, &bytes_read);

Finally, we will cast each 4 bytes of our buffer as a DWORD and determine if its value
equals the argument passed. If so, we will write its location to our results file:

for (int j = 0; j < size - 4; j += 4) {
DWORD val = 0;
memcpy(&val, &buffer[j], 4);
if (val == passed_val) {
fprintf(temp_file, "%x\n", i + j);
}

If a read fails, our buffer will contain nothing but 0's and this final step will find nothing.
After we finish with our ReadProcessMemory loop, we will close the file and free the
buffer's memory:

fclose(temp_file);
free(buffer);

Our search function is now finished. If you build this code and search for a gold value
inside Wesnoth, you will see that res.txt now contains a several addresses:

MemoryScanner.exe search 75

7.3.8 Filtering

The next operation we will focus on is filtering. The filtering operation will take a list of
addresses produced by the search operation and check to see if those addresses equal
a new value. If the address does equal the value, it will be saved. If it does not, it will
be deleted:

void filter(const HANDLE process, const int passed_val) {

385

We will conduct the filtering operation in two parts:

1. Read each memory address from res.txt and if it matches the new value, save it
to res_fil.txt.
2. Copy res_fil.txt to res.txt and delete res_fil.txt.

The end result will be a new res.txt file that contains only the filtered addresses. This
model will allow us to filter multiple times. First, we will open res.txt for reading (r) and
res_fil.txt for writing (w):

FILE* temp_file = NULL;

FILE* temp_file_filter = NULL;
fopen_s(&temp_file, "res.txt", "r");
fopen_s(&temp_file_filter, "res_fil.txt", “w");

We will then read each address from res.txt line by line and read Wesnoth's memory at
that address. If the value matches our argument, we will write the address to res_fil.txt:

DWORD address = 0;

while (fscanf_s(temp_file, "%x\n", &address) != EOF) {
DWORD val = 0;
DWORD bytes_read = 0;

ReadProcessMemory(process, (void*)address, &val, 4, &bytes_read);
if (val == passed_val) {

fprintf(temp_file_filter, "%x\n", address);
ks

With all the filtered addresses in res_fil.txt, we will then close both res.txt and
res_fil.txt. Then, we will open up these files in the opposite order from above, with
res.txt for writing and res_fil.txt for reading:

fclose(temp_file);
fclose(temp_file_filter);

fopen_s(&temp_file, "res.txt", "w");
fopen_s(&temp_file_filter, "res_fil.txt", “r");

Next, we will loop through each address in res_fil.txt and copy it to res.txt:

386

while (fscanf_s(temp_file_filter, "%x\n", &address) != EOF) {
fprintf(temp_file, "%x\n", address);
}

With res.txt now containing our addresses, we will close each file and delete
res_fil.txt:

fclose(temp_file);
fclose(temp_file_filter);

remove(“res_fil.txt");

We can now search for and filter addresses. If you search for your gold in Wesnoth, buy
a unit, and then filter your gold value, you should be left with a single value. If you
open up Cheat Engine and repeat these steps, you can verify that the address you
identified and the address from Cheat Engine match. This shows that our scanner is
properly finding memory addresses.

MemoryScanner.exe filter 54

7.3.9 Writing

The final main operation of a memory scanner is writing values to identified memory
addresses:

void write(const HANDLE process, const int passed_val) {

This operation is identical to the approach we used in Chapter 3.2. For each address in
res.txt, we will use WriteProcessMemory to write the provided argument value to the
address:

FILE* temp_file = NULL;
fopen_s(&temp_file, "res.txt", "r");

DWORD address = 0;
while (fscanf_s(temp_file, "%x\n", &address) != EOF) {
DWORD bytes_written = 0;

387

WriteProcessMemory(process, (void*)address, &passed_val, 4,
&bytes_written);
ks

fclose(temp_file);

With this code, we can now write whatever value we want to the previously searched
for and filtered addresses:

MemoryScanner.exe write 555

The full code for this chapter is available in Appendix A for comparison.

388

7.4 Disassembler

7.4.1 Target

Our target in this chapter will be Wesnoth 1.14.9.

7.4.2 Overview

In previous chapters, we used x64dbg to debug and reverse games. When viewing
these games in x64dbg, we are able to see the instructions that the games are
executing. For example, we saw that the following instructions were responsible for
decreasing a player's gold when recruiting a unit in Wesnoth:

JU735sn

From Chapter 7.2, we know that these instructions are all stored as opcodes, which are
byte values. The process of converting these opcodes to instructions is known as
disassembly. In this chapter, we will cover how to create a limited disassembler.

The full source code discussed in this chapter is available in Appendix A.

389

7.4.3 Disclaimer

Writing a disassembler is a complex task that takes a large amount of time. Even
supporting a single instruction set in an efficient way takes many weeks of reading
specifications and implementation. The approach covered here should be used as a
starting point, but with the caveat that the approach will not scale. The main goal for
this chapter is to explain how these concepts work. For an example of a feature-
complete disassembler, check out the Capstone Engine.

7.4.4 Instructions

For a CPU to understand and execute each opcode encountered, these opcodes must
have a consistent format. Each opcode must be assigned a specific instruction. For
example, we have seen from previous chapters that the opcode OxE8 always represents
a call instruction. This mapping of opcodes to instructions is known as a processor's
instruction set.

Each CPU can implement a unique instruction set. However, most Windows-based
games are compiled with the expectation that they will be running on 32-bit, Intel-
based processors. These processors typically implement a version of the x86 instruction
set. For Intel processors specifically, this is referred to as IA-32.

The x86 instruction set is complex and has many different operations. These operations
can also be a different length. For example, in the screenshot on the page above, we
see that the mov instruction on the second line (0x7ccd93) is 2 bytes (0x89C2), whereas
the mov instruction on the third line is 6 bytes (0x8985 78FCFFFF). For the CPU to
understand the length of the instruction, this data must be encoded in the bytes in
some way.

7.4.5 Instruction Set Reference

Imagine you want to create a compiler that will take the following C++ code and
produce a binary that can run on an x86-compatible processor:

int x = 2;

This code could be converted into assembly in multiple ways, such as:

390

https://www.capstone-engine.org/

mov [x], 2

or

mov eax, 2
mov [x], eax

We have seen that there are multiple forms of the mov instruction, with different
lengths. As the compiler developer, we need to know which form to use to produce our
binary code.

To solve this problem, companies like Intel release instruction set references. These
contain a full listing of all public instructions and their associated opcodes, along with
other architectural information, such as how to encode the length of the instruction.
The |A-32 reference is available here.

As we build our disassembler, we will use that reference to understand instructions. In
addition, we will use another reference (here) to help figure out unknown opcodes and
which instruction they are associated with.

7.4.6 Dumping a Process's Opcodes

Like in Chapter 7.2, our target in this chapter will be Wesnoth. We will use the same
code from that chapter to locate, attach, and read the game's opcodes into a buffer:

int main(int argc, char** argv) {
HANDLE process_snhapshot = 0;
HANDLE module_snapshot = 0;
PROCESSENTRY32 pe32 = { 0 };
MODULEENTRY32 me32;

DWORD exitCode = 0;

pe32.dwSize
me32.dwSize

sizeof (PROCESSENTRY32);
sizeof (MODULEENTRY32);

process_snhapshot = CreateToolhelp32Snapshot(TH32CS_SNAPPROCESS, @);
Process32First(process_snapshot, &pe32);

do {

391

https://software.intel.com/content/www/us/en/develop/download/intel-64-and-ia-32-architectures-sdm-combined-volumes-1-2a-2b-2c-2d-3a-3b-3c-3d-and-4.html
http://ref.x86asm.net/coder64.html

if (wcscmp(pe32.szExeFile, L"wesnoth.exe") == 0) {
module_snapshot =
CreateToolhelp32Snapshot(TH32CS_SNAPMODULE, pe32.th32ProcessID);

HANDLE process = OpenProcess(PROCESS_ALL_ACCESS, true,
pe32.th32ProcessID);

Module32First(module_snapshot, &me32);
do {
if (wcscmp(me32.szModule, L"wesnoth.exe") == 0) {
unsigned char* buffer = (unsigned
char*)calloc(l, me32.modBaseSize);
DWORD bytes_read = 0;

ReadProcessMemory(process,
(void*)me32.modBaseAddr, buffer, me32.modBaseSize, &bytes_read);

// buffer contains the game's opcodes

free(buffer);
break;

ks
} while (Module32Next(module_snapshot, &me32));

CloseHandle(process);
break;

ks
} while (Process32Next(process_snapshot, &pe32));

return 0;

We will validate our disassembler on the same instruction set seen in Section 7.4.2
(starting at the address @x7ccd91). We will also only disassemble 0x5@ bytes’ worth of
instructions. First, we will simply dump all the opcodes:

#define START_ADDRESS 0x7ccd91

unsigned int i = START_ADDRESS - (DWORD)me32.modBaseAddr;
while (i < START_ADDRESS + 0x50 - (DWORD)me32.modBaseAddr) {
printf("%x", buffer[i]);
i++;

392

printf("\n");

Our code above needs to offset i in this manner due to how the opcodes are read into
our buffer. Like we saw in Chapter 7.2, the game's main module is loaded at address
0x400000. However, this instruction is stored at position O in our buffer. To gain access
to the opcodes starting at @x7ccd91, we need to determine the distance from
@x7ccd9l to 0x400000 and use that position in our buffer.

When executed, this code will produce the following result:

B At aa thain Desas Dona e - a X

We can see that these opcodes line up with the values observed in x64dbg.

7.4.7 The add Instruction

Starting at the very top, we see that the first opcode is @x@1. Looking at our reference
site here, we see that this is an add instruction:

pf|OF|po|so|o|proc| =t m|xl|x| mnemonic opl ope
00 I L|2DD r/m8 ré
0L T L|2DD r/ml6/32/64 rl6/32/64
02 I 2DD r8 r/m8
na - ARN -1£122/€1 im1C /20 1CA

If we look in section 3.2 of the reference, we can see that this instruction adds a 32-bit
register to a 32-bit register:

393

http://ref.x86asm.net/coder64.html

< Ao o It v Vil MU IO W o.
A ADD r/m3é, 132 MR Vald Valid Add 132 tor/m3e.
GEY W+ 01 4 ANN sikd kA MR Vaked N Lalrl +RA 1 s SmkA

We still need to figure out how these registers are encoded, but for now, we can
modify our main loop to print out an add instruction whenever we encounter 0x01.
Since we know that this instruction is 2 bytes, we will increment past the next opcode
when we encounter it as well. We can also add code to print out the current address of
the instruction:

while (i < START_ADDRESS + 0x50 - (DWORD)me32.modBaseAddr) {
printf("%x:\t", i + (DWORD)me32.modBaseAddr);
switch (buffer[i]) {
case Ox1:
printf("ADD ");
i++;
i++;
break;
default:
printf("%x", buffer[i]);
1++;
break;

}

printf("\n");

When running this code, we will now see that the first add instruction is correctly
disassembled:

394

7.4.8 Decoding Operands

After @x01, the next opcode is @xD8. We know that this @xD8 is somehow responsible
for encoding the value of eax, ebx. Just like with opcodes, the exact method to
decode this value must exist somewhere in this manual. If we look at the reference
manual’s section 2.1, we see that directly following the opcode is a ModR/M value that
is 1 byte long:

Opcode ModR/M

1-, 2-, or 3-byte 1 byte 1b
opcode (if required) (T

~J

7/ 65 32 0
Reg/
o0 opeste | M

395

If we scroll down to table 2-2, we can see how this value is laid out:
Table 2-2. 32-Bit Addressing Forms with the ModR/M Byte

rale) A L DL EL AH CH H EH
r15i] AKX % DY EX 5P EP sl nl
32! EAX ECX EDX | EBX ES9 EEP €5 EDI
mmiir] M MM (MMZ (MBS MM4 [MMS (MM MMT
Ty XMMO XMMD [D04MZ | X443 XMMA | XMMS | XMME | XMM7
(Ihdedma) feicit [Opeaze) o 1 2 3 4 5 € 7
(hbinary REG™ €00 o 010 |ON 100 100 110 m
Effective Address Mod R/M Value of ModR/M Bytp {in Hexadecimal)
EAX) [00 w0 =) 10 18 20 28 30 8
ELX] 001 01 (5] 1 19 21 29 31 39
EDX 010 o 05 12 14 Z2 24 32 A
EBX 011 03 03 13 1B Z3 2B 33 3B
=|[-I", 1 04 oo 14 1C 21 2C 34 3
dsoige 101 o (i8] 15 10 25 20 35 30
[110 6 0 16 1E 2% 2t 36 3t
(1] m 0/ s 17 1F 2/ 2F 37 3F
EAX] 1clpa? o0 00 40 43 S0 53 B0 68 70 T8
€Cx|idieps (ia)] 1 49 51 £9 61 69 N 79
€DX] dipa 010 42 4n 52 A 62 (] 72 TA
€BX] depa 011 43 49 53 1) 63 &0 73 bt
b[-- dupl 100 44 4c 54 £C &1 6C 74 7C
c P anE 101 45 40 55 =D 65 60 75 7D
l{] 46 4 56 [(7 6L 76 7€
€Ol sp@ " 47 ar 57 & 67 &r 77 "
EAX]+disp32 10 000 @0 83 an G A0 A3 ED EE
€3 disp32 001 £l 89 a2 L] A A9 El B9
€DX]-dkp32 010 & 24 a2 o4 A Al > BA
FEX]-dkp3? 011 £ & a3 “®e A AR E3 [
—[-)}-dkp32 100 8L 87 a4 o Ad aAC Bt BC
EEFdispi? ™om 8 28] a95 “0 AS Al B> ED
S dispi? a % B 96 SE AB AF E5 BE
EDIj+d 5p32 m 87 el ar SF " AF E7 BF
EAXSASALMMONKMMO 1 0o o ;] DO 03 €0 €5 f0 B
ESOCIAUTMIA MM 001 C1 9 D1 m £1 €9 fl Fa
EDM/DXIDLMME X MM2 010 2 A D2 D& £2 =) F2 F&
ESX/BXISLMMINMM3 o1 3 (B D3 03 £3 E8 F3 FB
ESPISP/AHIMML MM 100 C4 c D4 (i £9 C F4 FC
ESPEPITHIMMSEMMS 101 5 > D5 mw £ ED FS FO
ESVSDHMMEXMME 10 CE CE D6 D= 6 EE FE FE
ECUDISAMMTISMMT m 7 CF D7 e E7 EF F7 FF

Finding the value of @xD8, we see that it is in the eax row and ebx column. Since this
value is stored in a consistent manner, we can write a function to retrieve it:

int decode_operand(unsigned char* buffer, int location) {

return 1;

So far, we have seen that operands are 1 byte long, so we will return a value of 1 to
correctly increment the loop. We can call this function from our main loop:

case 0Ox1:
printf("ADD ");
i++;

396

i += decode_operand(buffer, i);
break;

Going back to the table, we can see that we have 8 possible values: eax, ecx, edx,
ebx, esp, ebp, esi, and edi. We can lay these out in an array of character arrays to
reference in our function:

const char modrm_value[8][4] = {

eax",

ecx",

edx",

ebx",
llespll ,

1

If we look at the table, we can see that eax will be the first operand whenever the byte

value ends in O or 8:

EAAKT AL XMMO 11 00 FD C 0o oe EQ E8 FO Fq
ECXOUTMM Y M 001 1 T o7 o9 E T Ll Fy
EDX/DXUDLMMZNXMMZ 210 c2 C D2 OA EZ EA Fz2 A
ESX/BYUBLMMIIXMM3 ol 3 (B 03 (M} E2 EB F3 B
ESPISE/AAMMA XM 100 cd Cl D4 oc E4 EC 4 FC
COPTRITHMMSHMMS 101 5 ch ns oe £S5 £n rs D
ESNSIOHT MBI XMMG 110 b Cl 0b UE ES EE F6 FE
EONDMHNMMZONMT 11 c? C n7z nr 7 €r 7 fr

This pattern continues for the other registers as well. For example, ecx always ends in 1
or 9, and edx in 2 or A. We can see that these values line up with the remainder when

we divide the operand value by 8. Therefore, we can use the modulo operator to
retrieve our first operand from the ModR/M value:

modrm_value[buffer[location] % 8]

To retrieve the second operand, we can use a similar operation. If we look at the
ModR/M structure, we can see that the first value is stored at bits O, 1, and 2:

397

Opcode

ModR/M

1-, 2-, or 3-byte 1 byte
opcode

7/

65

(if required)

32 0

Reg/
oo | opeste |

For example, when converted to binary, @xD8 is represented as:

1b
(if r

| — RN

1101 1000

For our first operand, we see that the three 000 bits are associated with the eax row. If
we then shift these bits to the right, we get the following value:

0001 1011

398

If we look at the columns on the top of the table, 011 is associated with the ebx
column, in the same way as the first operand. As such, we can use the same approach
once we shift the bits to retrieve the second operand via the modulo operator:

modrm_value[(buffer[location] >> 3) % 8]

With these two pieces, we can implement our function:

if (buffer[location] >= 0xC@ && buffer[location] <= OxFF) {
printf("%s, %s", modrm_value[buffer[location] % 8],
modrm_value[(buffer[location] >> 3) % 8]);
return 1;

¥

Running this code will correctly print the operands for the add operation:

Microsoft Visual Studio Debug Conscle
:
7ccd91: ADD eax, ebx

7.4.9 Other Instructions

Now that we can disassemble the add instruction, we can begin working on other
instructions. First, let's implement the mov instruction at @x7ccd93:

case 0x89:
printf("MOV ");
i++;
i += decode_operand(buffer, i);
break;

Running this, we can verify that our operand decoding is working correctly, as @xC2 (the
operand associated with the second move) correctly decodes to edx, eax:

399

ADD eax, ebx

MOV edx, eax

However, the next mov instruction does not decode correctly. Despite being the same
opcode (0x89), it has an operand that we have not seen before, @x85. If we look at the
table, we see that this is associated with [ebp] + displacement, or an offset. If we look
at the x64dbg version, we can see that this offset is -0x388. We know that this value
must be encoded somewhere in the instruction. Since @x89 85 are already accounted
for, this value must be in the Ox78fcffff bytes.

In previous chapters, we talked about endianness, or the order of bytes. We identified
that bytes are stored in a little-endian format. As a result, we need to reverse these
bytes:

FF FF FC 78

This value does not match @x388. This is due to the signed nature of the value. Since
this is a negative value, we need to subtract the maximum value of an integer (OxFF FF
FF FF) to get the correct value:

FF FF FF FF -
FF FF FC 78 =
387

We then need to add 1 to account for the sign change, resulting in the correct value of
-0x388.

Since we now understand how this is working, we can add this to our decode
operation:

else if (buffer[location] >= 0x80 && buffer[location] <= @xBF) {

DWORD displacement = buffer[location + 1] | (buffer[location + 2] << 8) |
(buffer[location + 3] << 16) | (buffer[location + 4] << 24);

printf("[%s+%x], %s", modrm_value[buffer[location] % 8], displacement,
modrm_value[(buffer[location] >> 3) % 8]);

return 5;

}

400

Like we saw with the first decoding operation, we can use bit shifting to retrieve each
of the bytes in the displacement. With this included, the third operation now correctly
decodes:

7ccd91: ADD eax, ebx

7ccd93: MOV edx, eax
7ccd95: MOV [ebp+fffffc78

7.4.10 Calls and Jumps

In previous chapters, we covered how the opcode for a call or jmp used the following
formula:

E8/E9 (new_location - original_location + 5)

We can reverse this operation to retrieve the address of a call from an opcode:

case OxES8:

printf("CALL ");

i++;

loc = buffer[i] | (buffer[i+1l] << 8) | (buffer[i+2] << 16) | (buffer[i+3]
<< 24);

printf("%x", loc + (i + (DWORD)me32.modBaseAddr) + 4);

i+= 4,

break;

We add 4 instead of 5 to account for the fact that our parser is past the @xE8 byte.

We also have a short relative jump if equal (je) instruction in our selected example. In
this case, we can observe that the second byte of the opcode contains the amount to
offset by:

7ccda8 74 23 je 7ccdcd
7ccda8 + 23 = 7ccdcd

401

We can add this logic to our main loop as well:

case Ox74:
printf("JE ");
printf("%x", i + (DWORD)me32.modBaseAddr + 2 + buffer[i + 1]);
i+= 2;
break;

7.4.11 Final Result

As stated in the disclaimer, this was not a comprehensive disassembler. In the source
shown in Appendix A, the following opcodes are implemented:

« ADD (0x01)

e MOV (0x89, 0x8B)
e SUB (0x29)

o JE (0x74)

o CALL (0xE8)

e CMP (0x80)
 LEA (0x8D)

With these instructions, we retrieve back the following result:

402

7.5 Debugger

7.5.1 Target

Our target for this chapter will be Assault Cube 1.2.0.2.

7.5.2 Overview

In previous chapters, we used x64dbg to debug and reverse games. After attaching
x64dbg to these games, we were able to set breakpoints on game instructions. When
the game executed these instructions, our breakpoints would pop and program
execution would pause. We could then observe the values of all the registers and step
through individual instructions.

In this chapter, we will explore how to create a debugger for Windows utilizing the
Windows API. We will confirm that this debugger is working by using Assault Cube as
an example. In Chapter 5.7, we identified that the mov instruction at 9x0046366C was
only executed when the player was firing. After we create our debugger, we will place a
breakpoint on this instruction and verify that it is only hit when we fire.

7.5.3 Windows Debugger API’s

Windows has a collection of API's that allow for a process to attach to and debug
another process. These are detailed in several short articles available on MSDN. For
our purposes, we mainly care about the following API’s:

» DebugActiveProcess, which is used to attach to a target process

« WaitForDebugEvent, which is used to wait for debugging events, as described
in this MSDN article

. ContinueDebugEvent, which is used to continue execution after a debug event
is triggered

When using these API's, we are attaching to a process and waiting for it to trigger one
of several debug events, such as creating a thread or encountering an exception.
However, when debugging a target we do not have the source code to, this will limit us
to only breaking on thread and process creation events.

403

https://docs.microsoft.com/en-us/windows/win32/debug/creating-a-basic-debugger
https://docs.microsoft.com/en-us/windows/win32/debug/writing-the-debugger-s-main-loop
https://docs.microsoft.com/en-us/windows/win32/debug/debugging-events

To be able to trigger a breakpoint on an address, we will need to use an interrupt

instruction. Interrupt instructions are a special set of software instructions that invoke a

special interrupt handler on the CPU. One of these instructions, int 3, will trigger a

breakpoint when executed. Its opcode is @xCC.

We can utilize this behavior to set a breakpoint on any instruction. Before we attach a

debugger to a process, we will use WriteProcessMemory to write @xCC to the

instruction we wish to break on. We will then listen for debug events like normal. When

we get a breakpoint event, we will restore the instruction to its original form and

continue execution. By doing this, we can set breakpoints on any instruction in targets

that we do not have the source control to.

The full source code for the debugger discussed in this chapter is available in

Appendix A.

7.5.4 Writing the Int 3 Instruction

To write our int 3 instruction into the target, we will use an approach covered in
previous chapters. First, we will iterate over all processes in the system using
CreateToolhelp32Snapshot and locate the Assault Cube process (ac_client.exe).
Then, we will open a handle to the process, and use that handle to write @xCC (the
opcode for int 3) over the instruction at @x0046366C:

HANDLE process_snapshot = NULL;
HANDLE process_handle = NULL;

DWORD pid;
DWORD bytes_written = 0;

BYTE instruction_break = @xcc;
PROCESSENTRY32 pe32 = { 0 };
pe32.dwSize = sizeof(PROCESSENTRY32);

process_snapshot = CreateToolhelp32Snapshot(TH32CS_SNAPPROCESS, 0);
Process32First(process_snapshot, &pe32);

do {
if (wcscmp(pe32.szExeFile, L"ac_client.exe") == 0) {
pid = pe32.th32ProcessID;

404

process_handle = OpenProcess(PROCESS_ALL_ACCESS, true,
pe32.th32ProcessID);

WriteProcessMemory(process_handle, (void*)@x0046366C,
&instruction_break, 1, &bytes_written);

}
} while (Process32Next(process_snapshot, &pe32));

Since we will need the process identifier (or pid) of Assault Cube for the
DebugActiveProcess API, we also store the pid for later use.

7.5.5 Main Debugger Loop

Next, we can use an identical model discussed on MSDN to attach to the target and
handle debugger events. The code provided on MSDN enters a permanent loop that
checks for debugging events and then continues execution when encountering an
event.

DEBUG_EVENT debugEvent = { 0 };
DWORD continueStatus = DBG_CONTINUE;

DebugActiveProcess(pid);

for (550 {
continueStatus = DBG_CONTINUE;

if (!WaitForDebugEvent(&debugEvent, INFINITE))
return 0;

switch (debugEvent.dwDebugEventCode) {
case EXCEPTION_DEBUG_EVENT:
switch (debugEvent.u.Exception.ExceptionRecord.ExceptionCode)
{
case EXCEPTION_BREAKPOINT:
continueStatus = DBG_CONTINUE;
break;
default:
continueStatus = DBG_EXCEPTION_NOT_HANDLED;
break;
ks
break;
default:

405

https://docs.microsoft.com/en-us/windows/win32/debug/creating-a-basic-debugger

continueStatus = DBG_EXCEPTION_NOT_HANDLED;
break;

}

ContinueDebugEvent(debugEvent.dwProcessId, debugEvent.dwThreadld,
continueStatus);

}

CloseHandle(process_handle);

7.5.6 Handling the Breakpoint

With this structure setup, we can now begin handling debugger events. First, let's
verify that our int 3 breakpoint actually worked with a print statement:

case EXCEPTION_BREAKPOINT:
printf("Breakpoint hit");

continueStatus = DBG_CONTINUE;
break;

Make sure Assault Cube is running and run the debugger we have built so far. It should
immediately print out Breakpoint hit. If you then fire, it will print out Breakpoint hit
again before the game crashes. This indicates that our breakpoint was set successfully.

However, crashing the target is not ideal. To fix this, we will need to adjust two things:

1. Only trigger our breakpoint when the instruction is executed and not when we
first run our program.
2. Restore the original instruction after our breakpoint is executed.

When we first attach to a process, a breakpoint exception is triggered. Since we only
want to handle our breakpoint on the instruction, we will ignore this first exception:

bool first_break_has_occurred = false;
case EXCEPTION_BREAKPOINT:
if (first_break_has_occurred) {
//only handle breakpoint events after the first exception

}

406

first_break_has_occurred = true;

Next, we can handle the crash that occurs after our breakpoint is triggered. This crash
occurs because we have replaced the original mov opcode (@x8b) with our interrupt.
After executing our interrupt and our handling of the debug event, the game tries to
execute the next opcode, which is not valid. To resolve this, we need to restore the
mov instruction after handling our debug event.

The EIP (extended instruction pointer) register is used to track the current instruction
executing. Each time an instruction is executed, it is changed to reflect the next
instruction address to execute. When we execute our int 3 instruction, it is increased by
1. To restore the mov instruction, we need to first decrease it.

We can do this by opening the thread responsible for triggering the breakpoint and
retrieving the context (registers) of the thread. We can then decrease the EIP register
and set the thread's context to our new values:

HANDLE thread_handle = NULL;
CONTEXT context = { 0 };

thread_handle = OpenThread(THREAD_ALL_ACCESS, true, debugEvent.dwThreadId);
if (thread_handle != NULL) {

context.ContextFlags = CONTEXT_ALL;

GetThreadContext(thread_handle, &context);

context.Eip--;

SetThreadContext(thread_handle, &context);
CloseHandle(thread_handle);

EIP will now point to the original mov instruction address again (0x0046366C).
However, the instruction at this location will still be int 3. To fix this, we can use
WriteProcessMemory to write the original opcode back to the address:

WriteProcessMemory(process_handle, (void*)@x0046366C, &instruction_normal, 1,
&bytes_written);

With this change, Assault Cube will no longer crash when our breakpoint is triggered.
In addition, we can set a breakpoint on the context.Eip-- line of code and verify that
we can view the contents of all registers when our breakpoint is triggered:

407

Vit e - 5 -

GetThresdlontext [taread_hancls, Bcontext

CONTENTUF 1{‘\

SelThresdContext [Liread _hendles, Zconiext

'lal‘ld': -

@ No I55ucs found 1 ’ Ln: 64

v 4 X Call ek
PE ScarchDepthe 2 - OF |3p Neme

® Project2 axe
value lyoe a

42 Lrsigned long
T 65280 unsigned long
ursigned long
unsigned long

Losigned long

L 30 3 N O Ol ¢

viosigned lung -

The same approach used to modify EIP can be used to modify other registers as well.

408

7.6 Call Logger

7.6.1 Target

Our target in this chapter will be Wesnoth 1.14.9.

7.6.2 Overview

When reversing complex applications like video games, one of the most difficult steps
is establishing a context inside the application. While there are many techniques to
establish a context, one approach is to create a modified debugger that logs all call
instructions executed by the application. Actions can then be executed in the game,
such as clicking a button, and all the related calls can be observed. The logged calls
can then be used to establish a context and begin reversing the target.

Our goal in this chapter is to modify the debugger we created in the previous chapter
to log all call instructions made by the target. The full code for this chapter is available

in Appendix A.
7.6.3 Locating the Main Module

In the previous chapter, we wrote a break instruction to a single location inside Assault
Cube. Our target for this chapter will be Wesnoth. Therefore, we will modify the code

responsible for locating the process's pid to find the Wesnoth process and remove the
code responsible for writing the single breakpoint:

do {
if (wcscmp(pe32.szExeFile, L"wesnoth.exe") == 0) {
pid = pe32.th32ProcessID;

process_handle = OpenProcess(PROCESS_ALL_ACCESS, true,
pe32.th32ProcessID);

ks
} while (Process32Next(process_snapshot, &pe32));

409

For this tool, we will only log calls in the main game module and not in external DLLS,
such as user32.dll. To determine the beginning and end address of the main module,
we will first use the EnumProcessModules API to retrieve a list of all loaded modules.
Then, we will use the GetModulelnformation API to retrieve the address space of the
first module, which always represents the main game module. We will execute this
code in the first debug event that occurs in the target (when we attach our debugger
to the process):

HMODULE modules[128] = { @ };
MODULEINFO module_info = { @ };
DWORD bytes_read = 0;

if (!first_break_has_occurred) {
EnumProcessModules(process_handle, modules, sizeof(modules),
&bytes_read);
GetModuleInformation(process_handle, modules[@], &module_info,
sizeof(module_info));

The GetModulelnformation API will fill module_info.SizeOflmage with the size of the
main module, and module_info.lpBaseOfDIl with the base address of the main
module. With this range, we can begin searching for call instructions.

Like we have done previously, we will use ReadProcessMemory to read the instructions
into a buffer. While we would like to read the entire memory of the whole process, this
approach will not work. This is because different memory sections of the process have
different memory protections. If the section does not allow reading, the call to
ReadProcessMemory will fail. If we try to read the entire memory of the process in one
call, we will encounter a section that fails, and then the entire read will fail.

To deal with this, we will instead read the memory in sections. These sections are called
memory pages, and the default memory page size in Windows is 4096 bytes. As such,
we will create a loop to read 4096 bytes of instructions at a time. We will use the
bytes_read parameter to determine how many bytes of the page were actually read:

#define READ_PAGE_SIZE 4096
unsigned char instructions[READ_PAGE_SIZE] = { 0 };
for (DWORD i1 = @; i < module_info.SizeOfImage; i += READ_PAGE_SIZE) {

ReadProcessMemory(process_handle, (LPVOID)((DWORD)module_info.lpBaseOfD11
+ 1), &instructions, READ_PAGE_SIZE, &bytes_read);

410

https://docs.microsoft.com/en-us/windows/win32/api/psapi/nf-psapi-enumprocessmodules
https://docs.microsoft.com/en-us/windows/win32/api/psapi/nf-psapi-getmoduleinformation

for (DWORD ¢ = @; c < bytes_read; c++) {

}

7.6.4 Locating Calls

Next, we will locate the call instructions in each page of memory. We know that the
opcode for the call instruction is @xe8. While iterating over each instruction, we will
check to see if it is Oxe8:

BYTE instruction_call = 0xe8;

for (DWORD ¢ = @; c < bytes_read; c++) {
if (instructions[c] == instruction_call) {

}

However, not all @xe8's represent call instructions. For example, the opcode for the
add eax, ebp instruction is @x@1 e8. We need to ensure that we do not identify these
random @xe8's as calls. The easiest way to do that is to read the 4 bytes after the call.

As we know from Chapter 2.6, these 4 bytes encode the location of the call. By
retrieving this location, we can check if the calculated location of these bytes is valid. If
not, we can assume that the @xe8 is not a call and use the continue instruction to
escape this check:

DWORD offset = 0;
DWORD call_location = 0;
DWORD call_location_bytes_read = 0;

if (instructions[c] == instruction_call) {
offset = (DWORD)module_info.lpBaseOfDll + i + c;
ReadProcessMemory(process_handle, (LPVOID)(offset + 1), &call_location,
4, &call_location_bytes_read);

call_location += offset + 5;
if (call_location < (DWORD)module_info.lpBaseOfD1l || call_location
>(DWORD)module_info.1pBaseOfD1l1l + module_info.SizeOfImage)

411

continue;

Finally, we will write a break instruction (@xcc) to the location. In addition to
WriteProcessMemory, we will use the FlushinstructionCache API to make sure our
changes are done immediately to the target:

BYTE instruction_break = @xcc;

WriteProcessMemory(process_handle, (void*)offset, &instruction_break, 1,
&bytes_written);
FlushInstructionCache(process_handle, (LPVOID)offset, 1);

Writing thousands of break instructions to a process can cause the program to crash. To
avoid this, we will only write 2000 breakpoints:

int breakpoints_set = 0;

if (breakpoints_set < 2000) {
WriteProcessMemory. ..
breakpoints_set++;

7.6.5 Handling Breakpoints

Now that we have written breakpoints to all the calls, we need to handle the
breakpoint events. We will start with the same approach that we used in the previous
chapter:

else {
thread_handle = OpenThread(THREAD_ALL_ACCESS, true,
debugEvent.dwThreadld);
if (thread_handle != NULL) {
context.ContextFlags = CONTEXT_ALL;
GetThreadContext(thread_handle, &context);

context.Eip--;

SetThreadContext(thread_handle, &context);
CloseHandle(thread_handle);

412

https://docs.microsoft.com/en-us/windows/win32/api/processthreadsapi/nf-processthreadsapi-flushinstructioncache

WriteProcessMemory(process_handle, (void*)context.Eip,
&instruction_call, 1, &bytes_written);
FlushInstructionCache(process_handle, (LPVOID)context.Eip, 1);
}

Like we saw before, this code will decrease EIP and restore the original call instruction.
Then, execution will resume at the call and the program will continue execution
normally. The downside with this approach is that each breakpoint is only hit once. For
our call logger, we want to log each time a call is executed. To achieve this behavior,
we will use single-step mode.

Single-stepping is a special type of debug event that executes a single instruction
before triggering an exception again. To enable single-step mode, we modify the
EFlags of the current thread like so:

context.Eip--;
context.EFlags |= 0x100;

Next, we need to handle the single-step event. We will introduce another case for this:

case EXCEPTION_SINGLE_STEP:

When we receive our exception here, it means that the call has finished executing.
Ultimately, our goal in this event is to restore the break instruction. We can do this via
WriteProcessMemory in an identical way to restoring the call instruction:

thread_handle = OpenThread(THREAD_ALL_ACCESS, true, debugEvent.dwThreadId);
if (thread_handle !'= NULL) {

context.ContextFlags = CONTEXT_ALL;

GetThreadContext(thread_handle, &context);

CloseHandle(thread_handle);

WriteProcessMemory(process_handle, (void*)last_call_location,
&instruction_break, 1, &bytes_written);

FlushInstructionCache(process_handle, (LPVOID)last_call_location, 1);
ks

With this code in place, our breakpoints will be restored after being triggered.

413

7.6.6 Adding Logging

Finally, we will add logging to this code so that we can see the triggered breakpoints.
In our debug event, we will store the current location of EIP:

DWORD last_call_location = 0;

last_call_location = context.Eip;

Next, in the single-step event, we will add the logging code. We know at this point that
we have executed the call and we are at the call's location. Now we can use the
following print statement to print the call's address and the location called:

printf("0x%08x: call 0x%08x\n", last_call_location, context.Eip);
last_call_location = 0;

In this chapter, we are only logging the calls as they happen. However, it is possible to
modify this code to also hook ret instructions. This would allow you to build out a
graph showing all calls made by the process and which calls call other calls.

414

Appendix A

A.1 Lab VM Setup
Script

Referenced in Chapter 1.4.

Set-WindowsExplorerOptions -EnableShowHiddenFilesFoldersDrives
-EnableShowProtected0SFiles -EnableShowFileExtensions
Enable-RemoteDesktop

cinst cheatengine
cinst x64dbg.portable

A.2 Wesnoth External
Gold Hack

Referenced in Chapter 3.2.
An external memory hack for Wesnoth 1.14.9 that modifies the player's gold.

This code will create a console application that sets the player's gold in Wesnoth 1.14.9
to the value of 555 when run. It makes use of ReadProcessMemory and
WriteProcessMemory to achieve this. The address @x@17EED18 represents the player's
base pointer in Wesnoth.

This program must be run as an administrator.

// FindWindow, GetWindowThreadProcesslId, OpenProcess, ReadProcessMemory, and
WriteProcessMemory are all contained inside windows.h
#include <Windows.h>

int main(int argc, char** argv) {

416

/*
To use ReadProcessMemory and WriteProcessMemory, we require a handle
to the Wesnoth process.

To get this handle, we require a process id. The quickest way to get
a process id for a particular
process is to use GetWindowThreadProcessId.

GetWindowThreadProcessId requires a window handle (different than a
process handle). To get this
window handle, we use FindWindow.
*/

// Find our Wesnoth window. Depending on your language settings, this
might be different.

HWND wesnoth_window = FindWindow(NULL, L"The Battle for Wesnoth -
1.14.9");

// Get the process id for the Wesnoth process. GetWindowThreadProcessId
does not return a process id, but

// rather fills a provided variable with its value, hence the &.

DWORD process_id = 0;

GetWindowThreadProcessId(wesnoth_window, &process_id);

// Open our Wesnoth process. PROCESS_ALL_ACCESS means we can both read
and write to the process. However,

// it also means that this program must be executed as an administrator
to work.

HANDLE wesnhoth_process = OpenProcess(PROCESS_ALL_ACCESS, true,
process_id);

// Read the value at 0x@17EED18 and place its value into the variable
gold_value.

DWORD gold_value = 0;

DWORD bytes_read = 0;

ReadProcessMemory(wesnoth_process, (void*)0x@17EED18, &gold_value, 4,
&bytes_read);

// Add 0xA90 to the value read from the last step and then read the value
at that new address. These

// offsets are covered in https://gamehacking.academy/lesson/13

gold_value += 0xA90;

ReadProcessMemory(wesnoth_process, (void*)gold_value, &gold_value, 4,
&bytes_read);

417

// Add 4 to the gold_value, which will then be pointing at the player's
current gold address.

// Write the value of new_gold_value (555) into this address

gold_value += 4;

DWORD new_gold_value = 555;

DWORD bytes_written = 0;

WriteProcessMemory(wesnoth_process, (void*)gold_value, &new_gold_value,
4, &bytes_written);

return 0;

A.3 Wesnoth Internal
Gold Hack

Referenced in Chapter 3.3.
An internal memory hack for Wesnoth 1.14.9 that modifies the player's gold.

This is an example of a DLL that needs to be injected into Wesnoth. Once injected, it
creates a thread within the game. This thread waits for a player to hit the “M" key and
then uses a series of pointers to directly set the player's gold value to 999.

This must be injected into the Wesnoth process to work. One way to do this is to use a
DLL injector. Another way is to enable Applnit_DLLs in the registry.

// CreateThread and GetAsyncKeyState are defined within windows.h
#include <Windows.h>

// Our injected thread. Since we want to monitor for the user's key presses,
// we use a while loop to ensure that this thread never exits. Inside the
thread, we

// check if the "M" key is being held down. If so, we directly access the
game's memory

// through the use of pointers. We use these pointers to set our player's
gold value.

void injected_thread() {

418

while (true) {
if (GetAsyncKeyState('M')) {
DWORD* player_base = (DWORD*)@x@17EED18;
DWORD* game_base = (DWORD*)(*player_base + 0xA90);
DWORD* gold = (DWORD*)(*game_base + 4);
*gold = 999;
ks

// So our thread doesn't constantly run, we have it pause
execution for a millisecond.

// This allows the processor to schedule other tasks.

Sleep(1);

¥

// When injected, the parent process looks for the DLL's D11Main, similar to
the main function in regular executables.
// There are several events that can occur, the most important one for us
being DLL_PROCESS_ATTACH. This occurs when the
// DLL is fully loaded into the process' memory.
//
// Once loaded, we create a thread. This thread will run in the background of
the game as long as the process remains open.
// The code that this thread will execute is shown above.
BOOL WINAPI D11Main(HINSTANCE hinstDLL, DWORD fdwReason, LPVOID
1pvReserved) {

if (fdwReason == DLL_PROCESS_ATTACH) {

CreateThread(NULL, @, (LPTHREAD_START_ROUTINE)injected_thread,

NULL, @, NULL);

ks

return true;

A.4 Wesnoth Code
Cave DLL

Referenced in Chapter 3.4.

419

A DLL that redirects the Terrain Description function in Wesnoth 1.14.9 to a custom
function that sets the player's gold to 888.

This custom function then recreates the Terrain Description function and returns
execution to the program.

This is done through the use of a code cave. When injected, the DLL modifies the
function that displays the terrain description and changes the code to jump to the code
cave function defined in the DLL. The code cave function then saves the registers, sets
the gold to 888, and restores the original modified instructions before returning to the
original calling code.

This must be injected into the Wesnoth process to work. One way to do this is to use a
DLL injector. Another way is to enable Applnit_DLLs in the registry.

#include <Windows.h>

DWORD* player_base;

DWORD* game_base;

DWORD* gold;

DWORD ret_address = OxCCAF90;

// Our code cave that program execution will jump to. The declspec naked
attribute tells the compiler to not add any function
// headers around the assembled code
__declspec(naked) void codecave() {

// Asm blocks allow you to write pure assembly

// In this case, we use it to save all the registers

__asm {

pushad

¥

// Set the player's gold in the same method discussed in https://
gamehacking.academy/lesson/16

player_base = (DWORD*)@0x@17EED18;

game_base = (DWORD*)(*player_base + 0xA90);

gold = (DWORD*)(*game_base + 4);

*gold = 888;

// Restore the registers and then recreate the original instructions
that we overwrote
// After those, jump back to the instruction after the one we overwrote
_asm {
popad

420

mov eax, dword ptr ds:[ecx]
lea esi,dword ptr ds:[esi]
jmp ret_address

¥

// When our DLL is attached, unprotect the memory at the code we wish to
write at
// Then set the first opcode to E9, or jump
// Caculate the location using the formula: new_location -
original_location+5
// Finally, since the original instructions totalled 6 bytes, NOP out the
last remaining byte
BOOL WINAPI D11Main(HINSTANCE hinstDLL, DWORD fdwReason, LPVOID 1pvReserved)
{

DWORD old_protect;

unsigned char* hook_location = (unsigned char*)0x@@CCAF8A;

if (fdwReason == DLL_PROCESS_ATTACH) {
VirtualProtect((void*)hook_location, 6, PAGE_EXECUTE_READWRITE,
&old_protect);
*hook_location = OxE9;
(DWORD)(Chook_location + 1) = (DWORD)&codecave -
((DWORD)hook_location + 5);
*(hook_location + 5) = 0x90;

¥

return true;

A.5 Wesnoth
Stathack

Referenced in Chapter 4.1.

A stathack for Wesnoth 1.14.9 that displays the second player's gold whenever the
Terrain Description box is shown.

421

This is done through the use of a code cave. When injected, the DLL modifies the
function that displays the terrain description and changes the code to jump to the code
cave function defined in the DLL. The code cave function then saves the registers, gets
the second player's gold, and writes the value into the buffer used by the game to
display the Terrain Description text. It then jumps back to the Terrain Description
method and displays the original description with the gold prepended to it.

This must be injected into the Wesnoth process to work. One way to do this is to use a
DLL injector. Another way is to enable Applnit_DLLs in the registry.

#include <Windows.h>
#include <stdio.h>

DWORD* player_base;
DWORD* game_base;
DWORD* gold;

// Original address called by the game
DWORD ori_call_address = 0x5E9630;

DWORD ret_address = Ox5ED12E;

// Buffer to hold the second player's gold value
char gold_byte_array[4] = { 0 };

// Our code cave that program execution will jump to. The declspec naked
attribute tells the compiler to not add any function
// headers around the assembled code
__declspec(naked) void codecave() {

// Asm blocks allow you to write pure assembly

// In this case, we use it to save all the registers

__asm {

pushad
}

// Get the second player's gold value based off the base pointer
player_base = (DWORD*)0xQ17EED18;

game_base = (DWORD*)(*player_base + 0xA90);

gold = (DWORD*)(*game_base + 0x274);

// Convert the gold value to its ASCII representation
sprintf_s(gold_byte_array, 4, "%d", *gold);

// Restore the registers corrupted by sprintf and save them again

422

// Then, load the buffer from edx, and place each byte of the second
player's gold

// value into the buffer

__asm {
popad
pushad
mov eax, dword ptr ds:[edx]
mov bl, gold_byte_array[@]
mov byte ptr ds:[eax], bl
mov bl, gold_byte_array[1]
mov byte ptr ds:[eax + 1], bl
mov bl, gold_byte_array[2]
mov byte ptr ds:[eax + 2], bl

¥

// Restore the registers and then recreate the original instructions
that we overwrote
// After those, jump back to the instruction after the one we overwrote
_asm {
popad
call ori_call_address
jmp ret_address

}

// When our DLL is attached, unprotect the memory at the code we wish to
write at
// Then set the first opcode to E9, or jump
// Calculate the location using the formula: new_location - original_location
+ 5
BOOL WINAPI D11Main(HINSTANCE hinstDLL, DWORD fdwReason, LPVOID 1pvReserved)
{

DWORD old_protect;

unsigned char* hook_location = (unsigned char*)@x5ED129;

if (fdwReason == DLL_PROCESS_ATTACH) {
VirtualProtect((void*)hook_location, 5, PAGE_EXECUTE_READWRITE,
&old_protect);
*hook_location = OxE9;
(DWORD)(hook_location + 1) = (DWORD)&codecave -
((DWORD)hook_location + 5);

}

return true;

423

A.6 Wesnoth Map
Hack

Referenced in Chapter 4.2.

A map hack for Wesnoth 1.14.9 that reveals the entire map by removing in-game fog-
of-war.

This is done by modifying the game's code responsible for re-setting all tiles to a
hidden state at the start of a player's turn. This code is modified to set all tiles to a
visible state (-1, or @xFFFFFFFF in Wesnoth). To fit in the space of the previous
instructions, this is done through the use of an or dword ptr ds:[esi],0OxFFFFFFFF
instruction (opcode @x830EFF), along with several nop's (0x90).

This must be injected into the Wesnoth process to work. One way to do this is to use a
DLL injector. Another way is to enable Applnit_DLLs in the registry.

#include <Windows.h>

// The new opcodes to write into the game's code
unsigned char new_bytes[8] = { 0x90, 0x90, 0x90, 0x83, OxQE, OxFF, 0x90, 0x90
s

// When our DLL is attached, first unprotect the memory responsible for
resetting the tiles in the game
// Then, write our new opcodes into that memory location
BOOL WINAPI D11Main(HINSTANCE hinstDLL, DWORD fdwReason, LPVOID 1pvReserved)
{

DWORD old_protect;

unsigned char* hook_location = (unsigned char*)@x6CD519;

if (fdwReason == DLL_PROCESS_ATTACH) {
VirtualProtect((void*)hook_location, 8, PAGE_EXECUTE_READWRITE,
&old_protect);
for (int i = 0; i < sizeof(new_bytes); i++) {
*Chook_location + i) = new_bytes[i];

}

424

return true;

A.7 Wyrmsun
Macrobot

Referenced in Chapter 4.3.

A hack for Wyrmsun version 5.0.1 that will automatically create worker units out of the
currently selected structure when a player's gold is over 3000.

It accomplishes this by filling the current unit buffer with worker data and then calling
the create unit function in the game.

After injecting this hack, go in game and recruit a worker. Then select a structure as you
collect gold. You will notice workers being queued automatically. Due to the way
Wyrmsun handles recruitment, it is possible to create units out of whatever is selected,
including other units.

This must be injected into the Wyrmsun process to work. One way to do this is to use a
DLL injector. Another way is to enable Applnit_DLLs in the registry.

#include <Windows.h>
HANDLE wyrmsun_base;

DWORD* base;

DWORD* unitbase;

DWORD recruit_unit_ret_address;
DWORD recruit_unit_call_address;
unsigned char unitdatal[0x110];
bool init = false;

DWORD gameloop_ret_address;
DWORD gameloop_call_address;
DWORD *gold_base, *gold;

425

// The recruit unit code cave hooks the game's recruit unit function
// It's main job is to copy a valid buffer of data for a worker unit

// instead of having to reverse the structure
__declspec(naked) void recruit_unit_codecave() {
__asm {

}

pushad
mov base, ecx

unitbase = (DWORD*)(*base);
memcpy(unitdata, unitbase, 0x110);
init = true;

_asm {

}

popad

push ecx

mov ecx, esi

call recruit_unit_call_address
jmp recruit_unit_ret_address

// In the main game loop, our code cave will check the current player's gold

// If it is over 3000, and we have a valid worker buffer, call the recruit

unit fun
// with

ction
worker data.

__declspec(naked) void gameloop_codecave() {

—_as

}

gold
gold
gold
gold
gold
gold
gold

if (

m {
pushad

_base = (DWORD*)((DWORD)wyrmsun_base + 0x0061A504);
(DWORD*)(*gold_base + 0x78);

(DWORD*)(*gold + 4);

(DWORD*)(*gold + 8);

(DWORD*)(*gold + 4);

(DWORD*)(*gold);

= (DWORD*)(*gold + 0x14);

init && *gold > 3000) {
memcpy(unitbase, unitdata, 0x110);
__asm {

mov ecx, base

push ecx

426

call recruit_unit_call_address

}
}
__asm {
popad
call gameloop_call_address
jmp gameloop_ret_address
}

¥

// When our DLL is attached, unprotect the memory at the code we wish to
write at

// Then set the first opcode to E9, or jump

// Caculate the location using the formula: new_location -
original_location+5

BOOL WINAPI D11Main(HINSTANCE hinstDLL, DWORD fdwReason, LPVOID 1pvReserved)

{
DWORD old_protect;

if (fdwReason == DLL_PROCESS_ATTACH) {
// Since Wyrmsun loads code dynamically, we need to calculate
offsets based of the base address of the main module
wyrmsun_base = GetModuleHandle(L"wyrmsun.exe");

unsigned char* hook_location = (unsigned char*)
((DWORD)wyrmsun_base + 0x223471);

recruit_unit_ret_address = (DWORD)hook_location + 8;

recruit_unit_call_address = (DWORD)wyrmsun_base + Ox2CF7;

VirtualProtect((void*)hook_location, 8, PAGE_EXECUTE_READWRITE,
&old_protect);

*hook_location = OxE9;

(DWORD)(Chook_location + 1) = (DWORD)&recruit_unit_codecave -
((DWORD)hook_location + 5);

*(hook_location + 5) = 0x90;

*(hook_location + 6) = 0x90;

*(hook_location + 7) = 0x90;

hook_location = (unsigned char*)((DWORD)wyrmsun_base + ©@x385D34);
gameloop_ret_address = (DWORD)hook_location + 5;
gameloop_call_address = (DWORD)wyrmsun_base + @xDBCA;

427

VirtualProtect((void*)hook_location, 5, PAGE_EXECUTE_READWRITE,
&old_protect);
*hook_location = OxE9;
(DWORD)(hook_location + 1) = (DWORD)&gameloop_codecave -
((DWORD)hook_location + 5);
ks

return true;

A.8 Urban Terror
Memory Wallhack

Referenced in Chapter 5.2.

A wallhack for Urban Terror 4.3.4 that reveals entities through walls by disabling depth
testing.

This is done by modifying each entity's render flag, which is responsible for
determining how the entity should be rendered. By setting this value to the in-game
value for disabled depth testing (@xD), entities will be drawn whether or not they should
be visible. The code hooked is a mov instruction, which occurs after ebx is loaded with
a valid entity structure.

This must be injected into the Urban Terror process to work. One way to do this is to
use a DLL injector. Another way is to enable ApplInit_DLLs in the registry.

#include <Windows.h>
DWORD ret_address = 0x0052D303;

// Our code cave that program execution will jump to. The declspec naked
attribute tells the compiler to not add any function
// headers around the assembled code
__declspec(naked) void codecave() {
// Asm blocks allow you to write pure assembly
// In this case, we use it to save all the registers

428

// Then set the entity's render value at [ebx+4] to disabled depth
testing (0xD)
// Then we restore the registers, recreate the original instruction,
and jump back to the program code
__asm {
pushad
mov dword ptr ds:[ebx+4], @xD
popad
mov dword ptr ds:[@0x102AE98], ebx

jmp ret_address

}

// When our DLL is attached, unprotect the memory at the code we wish to
write at
// Then set the first opcode to E9, or jump
// Caculate the location using the formula: new_location -
original_location+5
// Finadlly, since the original instructions totalled 6 bytes, NOP out the
last remaining byte
BOOL WINAPI D11Main(HINSTANCE hinstDLL, DWORD fdwReason, LPVOID 1pvReserved)
{

DWORD old_protect;

unsigned char* hook_location = (unsigned char*)0x0052D2FD;

if (fdwReason == DLL_PROCESS_ATTACH) {
VirtualProtect((void*)hook_location, 5, PAGE_EXECUTE_READWRITE,
&old_protect);
*hook_location = OxE9;
(DWORD)(hook_location + 1) = (DWORD)&codecave -
((DWORD)hook_location + 5);
*(hook_location + 5) = 0x90;
ks

return true;

429

A.9 Urban Terror
OpenGL Wallhack

Referenced in Chapter 5.3.

A wallhack for Urban Terror 4.3.4 that reveals entities through walls by hooking the
game's OpenGL function glDrawElements and disabling depth testing for OpenGL.

This is done by locating the glDrawElements function inside the OpenGL library and
creating a code cave at the start of the function. In the code cave, we check the
number of vertices associated with the element. If it is over 500, we call glDepthRange
to clear the depth clipping plane and glDepthFunc to disable depth testing.
Otherwise, we call these same functions to re-enable the depth clipping plane and re-
enable depth testing.

This DLL must be injected into the Urban Terror process to work. One way to do this is
to use a DLL injector. Another way is to enable Applnit_DLLs in the registry.

#include <Windows.h>
HMODULE openGLHandle = NULL;

// Function pointers for two OpenGL functions that we will dynamically
populate

// after injecting our DLL

void (__stdcall *glDepthFunc)(unsigned int) = NULL;

void (__stdcall* glDepthRange)(double, double) = NULL;

unsigned char* hook_location;

DWORD ret_address = 0;
DWORD old_protect;
DWORD count = 0;

// Code cave that runs before glDrawElements is called
__declspec(naked) void codecave() {
// First, we retrieve the count parameter from the original call.

430

// Then, we retrieve the value of the count parameter, which specifies
the amount
// of indicies to be rendered
__asm {
pushad
mov eax, dword ptr ds : [esp + 0x10]
mov count, eax
popad
pushad
ks

// If the count is over 500, we clear the depth clipping plane and then
// set the depth function to GL_ALWAYS
if (count > 500) {
(*glDepthRange) (0.0, 0.0);
(*glDepthFunc)(0x207);
}
else {
// Otherwise, restore the depth clipping plane to the game's
default value and then
// set the depth function to GL_LEQUAL
(*glDepthRange) (0.0, 1.0);
(*glDepthFunc)(0x203);

ks
// Findlly, restore the original instruction and jump back
__asm {

popad

mov esi, dword ptr ds : [esi + OxA18]
jmp ret_address

¥

// The injected thread responsible for creating our hooks
void injected_thread() {
while (true) {

// Since OpenGL will be loaded dynamically into the process, our
thread needs to wait

// until it sees that the OpenGL module has been loaded.

if (openGLHandle == NULL) {

openGLHandle = GetModuleHandle(L"opengl32.d11");

}

// Once loaded, we first find the location of the two depth
functions we are using in our

431

// code caves above
if (openGLHandle != NULL && glDepthFunc == NULL) {
glDepthFunc = (void(__stdcall*)(unsigned
int))GetProcAddress(openGLHandle, "glDepthFunc");
glDepthRange = (void(__stdcall*)(double,
double))GetProcAddress(openGLHandle, "glDepthRange");

// Then we find the location of glDrawElements and offset
to an instruction that is easy to hook

hook_location = (unsigned
char*)GetProcAddress(openGLHandle, "glDrawElements");

hook_location += 0x16;

// For the hook, we unprotect the memory at the code we
wish to write at

// Then set the first opcode to E9, or jump

// Caculate the location using the formula: new_location -
original_location+5

// And finally, since the first original instructions
totalled 6 bytes, NOP out the last remaining byte

VirtualProtect((void*)hook_location, 5,
PAGE_EXECUTE_READWRITE, &old_protect);

*hook_location = OxE9;

(DWORD)(Chook_location + 1) = (DWORD)&codecave -
((DWORD)hook_location + 5);

*(hook_location + 5) = 0x90;

// Since OpenGL is loaded dynamically, we need to
dynamically calculate the return address
ret_address = (DWORD)(Chook_location + 0x6);

}

// So our thread doesn't constantly run, we have it pause
execution for a millisecond.

// This allows the processor to schedule other tasks.

Sleep(1);

¥

// When our DLL is loaded, create a thread in the process to create the hook
// We need to do this as our DLL might be loaded before OpenGL is loaded by
the process

BOOL WINAPI D11Main(HINSTANCE hinstDLL, DWORD fdwReason, LPVOID 1pvReserved)

{
if (fdwReason == DLL_PROCESS_ATTACH) {

432

CreateThread(NULL, @, (LPTHREAD_START_ROUTINE)injected_thread,
NULL, @, NULL);
ks

return true;

A.10 Urban Terror
OpenGL Chams

Referenced in Chapter 5.4.

A chams hack for Urban Terror 4.3.4 that both reveals entities through walls and
changes these models to a bright red color. It works by hooking the game's OpenGL
function glDrawElements and disabling depth testing and textures for OpenGL.

This is done by locating the glDrawElements function inside the OpenGL library and
creating a code cave at the start of the function. In the code cave, we check the
number of vertices associated with the element. If it is over 500, we call glDepthRange
to clear the depth clipping plane and glDepthFunc to disable depth testing. We then
disable texture and color arrays and enable color material before setting the color to
red with glColor.

Otherwise, we call these same functions to re-enable the depth clipping plane, re-
enable depth testing, and re-enable textures.

This DLL must be injected into the Urban Terror process to work. One way to do this is
to use a DLL injector. Another way is to enable Applnit_DLLs in the registry.

#include <Windows.h>
#include <vector>

HMODULE openGLHandle = NULL;

// Function pointers for two OpenGL functions that we will dynamically
populate

433

// after injecting our DLL
void(__stdcall* glDepthFunc)(unsigned int) = NULL;
void(__stdcall* glDepthRange)(double, double) = NULL;

void(__stdcall* glColor4f)(float, float, float, float) = NULL;
void(__stdcall* glEnable)(unsigned int) = NULL;
void(__stdcall* glDisable)(unsigned int) = NULL;
void(__stdcall* glEnableClientState)(unsigned int) = NULL;
void(__stdcall* glDisableClientState)(unsigned int) = NULL;

unsigned char* hook_location;

DWORD ret_address = 0;
DWORD old_protect;
DWORD count = 0;

// Code cave that runs before glDrawElements is called
__declspec(naked) void codecave() {
// First, we retrieve the count parameter from the original call.
// Then, we retrieve the value of the count parameter, which specifies
the amount
// of indicies to be rendered
__asm {
pushad
mov eax, dword ptr ds : [esp + 0x10]
mov count, eax
popad
pushad
}

// If the count is over 500, we clear the depth clipping plane and then
// set the depth function to GL_ALWAYS
// We then disable color and texture arrays and enable color materials
before setting
// the color to red
if (count > 500) {
(*glDepthRange) (0.0, 0.0);
(*glDepthFunc)(0x207);

(*glDisableClientState)(0x8078);
(*glDisableClientState)(0x8076);
(*glEnable)(0x0@B57);
(*glColor4f)(l1.0f, @.6f, 0.6f, 1.0f);

else {

434

// Otherwise, restore the depth clipping plane to the game's
default value and then

// set the depth function to GL_LEQUAL and restore textures

(*glDepthRange) (0.0, 1.0);

(*glDepthFunc)(0x203);

(*glEnableClientState)(0x8078);

(*glEnableClientState)(0x8076);

(*glDisable)(@0x0B57);

(*glColor4f)(l.0f, 1.0f, 1.0f, 1.0f);
3

// Finally, restore the original instruction and jump back
__asm {

popad

mov esi, dword ptr ds : [esi + OxAl8]

jmp ret_address

}

// The injected thread responsible for creating our hooks
void injected_thread() {
while (true) {
// Since OpenGL will be loaded dynamically into the process, our
thread needs to wait
// until it sees that the OpenGL module has been loaded.
if (openGLHandle == NULL) {
openGLHandle = GetModuleHandle(L"opengl32.d11");
}

// Once loaded, we first find the location of the functions we
are using in our
// code caves above
if (openGLHandle != NULL && glDepthFunc == NULL) {
glDepthFunc = (void(__stdcall*)(unsigned
int))GetProcAddress(openGLHandle, "glDepthFunc");
glDepthRange = (void(__stdcall*)(double,
double))GetProcAddress(openGLHandle, "glDepthRange");
glColordf = (void(__stdcall*)(float, float, float,
float))GetProcAddress(openGLHandle, "glColor4f");
glEnable = (void(__stdcall*)(unsigned
int))GetProcAddress(openGLHandle, "glEnable");
glDisable = (void(__stdcall*)(unsigned
int))GetProcAddress(openGLHandle, "glDisable™);

435

glEnableClientState = (void(__stdcall*)(unsigned
int))GetProcAddress(openGLHandle, "glEnableClientState™);

glDisableClientState = (void(__stdcall*)(unsigned
int))GetProcAddress(openGLHandle, "glDisableClientState");

// Then we find the location of glDrawElements and offset
to an instruction that is easy to hook

hook_location = (unsigned
char*)GetProcAddress(openGLHandle, "glDrawElements");

hook_location += 0x16;

// For the hook, we unprotect the memory at the code we
wish to write at

// Then set the first opcode to E9, or jump

// Caculate the location using the formula: new_location -
original_location+5

// And finally, since the first original instructions
totalled 6 bytes, NOP out the last remaining byte

VirtualProtect((void*)hook_location, 5,
PAGE_EXECUTE_READWRITE, &old_protect);

*hook_location = OxE9;

(DWORD)(hook_location + 1) = (DWORD)&codecave -
((DWORD)hook_location + 5);

*(hook_location + 5) = 0x90;

// Since OpenGL is loaded dynamically, we need to
dynamically calculate the return address
ret_address = (DWORD)(Chook_location + @x6);

¥

// So our thread doesn't constantly run, we have it pause
execution for a millisecond.

// This allows the processor to schedule other tasks.

Sleep(1);

}

// When our DLL is loaded, create a thread in the process to create the hook
// We need to do this as our DLL might be loaded before OpenGL is loaded by
the process
BOOL WINAPI D11Main(HINSTANCE hinstDLL, DWORD fdwReason, LPVOID 1pvReserved)
{

if (fdwReason == DLL_PROCESS_ATTACH) {

CreateThread(NULL, @, (LPTHREAD_START_ROUTINE)injected_thread,

NULL, @, NULL);

436

}

return true;

A.11 Assault Cube
Triggerbot

Referenced in Chapter 5.5.

A triggerbot for Assault Cube 1.2.0.2 that fires the player's weapon whenever the
crosshair goes over another player.

This works by hooking the game's feature that displays nametags when you hover over
a player. Whenever a player is hovered over, our code cave will send a mouse down
event to the game. Otherwise, it will send a mouse up event to stop firing.

This must be injected into the Assault Cube process to work. One way to do this is to
use a DLL injector. Another way is to enable Applnit_DLLs in the registry.

#include <Windows.h>

DWORD ori_call_address
DWORD ori_jump_address

0x4607C0;
0x0040ADAZ ;

INPUT input = { 0 };
DWORD edi_value = 0;

// Our code cave that program execution will jump to. The declspec naked
attribute tells the compiler to not add any function
// headers around the assembled code
__declspec(naked) void codecave() {

// Asm blocks allow you to write pure assembly

// In this case, we use it to call the function we hooked and save all
the registers

437

// After we make the call, we move its return value in eax into a
variable
__asm {
call ori_call_address
pushad
mov edi_value, eax

}

// If the result of the call is not zero, then we are looking at a
player
// Create a mouse event to simulate the left mouse button being pressed
down and send it to the game
// Otherwise, raise the mouse button up so we stop firing
if (edi_value '= 0) {
input.type = INPUT_MOUSE;
input.mi.dwFlags = MOUSEEVENTF_LEFTDOWN;
SendInput(l, &input, sizeof(INPUT));
ks
else {
input.type = INPUT_MOUSE;
input.mi.dwFlags = MOUSEEVENTF_LEFTUP;
SendInput(l, &input, sizeof(INPUT));
}

// Restore the registers and jump back to original code
_asm {

popad

jmp ori_jump_address

}

// When our DLL is attached, unprotect the memory at the code we wish to
write at
// Then set the first opcode to E9, or jump
// Caculate the location using the formula: new_location -
original_location+5
BOOL WINAPI D11Main(HINSTANCE hinstDLL, DWORD fdwReason, LPVOID 1pvReserved)
{

DWORD old_protect;

unsigned char* hook_location = (unsigned char*)0x0040AD9D;

if (fdwReason == DLL_PROCESS_ATTACH) {
VirtualProtect((void*)hook_location, 5, PAGE_EXECUTE_READWRITE,
&old_protect);
*hook_location = OxE9;

438

(DWORD)(hook_location + 1) = (DWORD)&codecave -
((DWORD)hook_location + 5);
ks

return true;

A.12 Assault Cube
Aimbot

Referenced in Chapter 5.6.
An aimbot for Assault Cube 1.2.0.2 that automatically aims at enemy players.

It works by iterating over the enemy list and picking the closest enemy through
Euclidean distance. The yaw and pitch required to aim at that enemy are then
calculated using arctangents.

This must be injected into the Assault Cube process to work. One way to do this is to
use a DLL injector. Another way is to enable Applnit_DLLs in the registry.

#include <Windows.h>
#include <math.h>

// The atan2f function produces a radian. To convert it to degrees, we need
the value of pi
#define M_PI 3.14159265358979323846

// The player structure for every player in the game
struct Player {

char unknownl[4];

float x;

float y;

float z;

char unknown2[0x30];

float yaw;

float pitch;

439

char unknown3[0x2fQ];
int dead;

+s

// Our player
Player *player = NULL;

// Function to calculate the euclidean distance between two points
float euclidean_distance(float x, float y) {

return sqrtf((x * x) + (y * y));
}

// This thread contains all of our aimbot code
void injected_thread() {

while (true) {
// First, grab the current position and view angles of our player
DWORD* player_offset = (DWORD*)(@x509B74);
player = (Player*)(*player_offset);

// Then, get the current number of players in the game
int* current_players = (int*)(@x50F500);

// These variables will be used to hold the closest enemy to us
float closest_player = -1.0f;

float closest_yaw = 0.0f;

float closest_pitch = 0.0f;

// Iterate through all active enemies

for (int i = 0; i < *current_players; i++) {
DWORD* enemy_list = (DWORD*)(@x50F4F8);
DWORD* enemy_offset = (DWORD*)(*enemy_list + (i*4));
Player* enemy = (Player*)(*enemy_offset);

// Make sure the enemy is valid and alive
if (player !'= NULL && enemy != NULL && !enemy->dead) {

// Calculate the absolute position of the enemy away
from us to ensure that our future calculations are correct and based

// around the origin

float abspos_x = enemy->x - player->Xx;

float abspos_y = enemy->y - player->y;

float abspos_z = enemy->z - player->z;

// Calculate our distance from the enemy

440

float temp_distance = euclidean_distance(abspos_x,
abspos_y);
// If this is the closest enemy so far, calculate the
yaw and pitch to aim at them
if (closest_player == -1.0f || temp_distance <
closest_player) {
closest_player = temp_distance;

// Calculate the yaw

float azimuth_xy = atan2f(abspos_y, abspos_x);

// Convert to degrees

float yaw = (float)(azimuth_xy * (180.0 /
M_PI));

// Add 90 since the game assumes direct north
is 90 degrees

closest_yaw = yaw + 90;

// Calculate the pitch

// Since Z values are so limited, pick the
larger between x and y to ensure that we

// don't look straight at the air when close to

an enemy
if (abspos_y < @) {
abspos_y *= -1;
ks
if (abspos_y < 5) {
if (abspos_x < @) {
abspos_x *= -1;
}
abspos_y = abspos_x;
ks
float azimuth_z = atan2f(abspos_z, abspos_y);
// Covert the value to degrees
closest_pitch = (float)(azimuth_z * (180.0 /
M_PI));

¥

// When our loop ends, set our yaw and pitch to the closst values
player->yaw = closest_yaw;
player->pitch = closest_pitch;

// So our thread doesn't constantly run, we have it pause
execution for a millisecond.

441

// This allows the processor to schedule other tasks.
Sleep(l);

}

// When our DLL is loaded, create a thread in the process that will handle
the aimbot code
BOOL WINAPI D11Main(HINSTANCE hinstDLL, DWORD fdwReason, LPVOID 1pvReserved)
{

if (fdwReason == DLL_PROCESS_ATTACH) {

CreateThread(NULL, @, (LPTHREAD_START_ROUTINE)injected_thread,

NULL, @, NULL);

ks

return true;

A.13 Assault Cube No
Recoil

Referenced in Chapter 5.7.
A hack for Assault Cube 1.2.0.2 that removes all recoil when firing a weapon.

This is done by modifying the game's code responsible for setting the player's recoil.
By changing the final instruction, which changes the value of the player's yaw, to
instead pop a value that is ignored, the player's yaw is never modified.

This must be injected into the Assault Cube process to work. One way to do this is to
use a DLL injector. Another way is to enable Applnit_DLLs in the registry.

#include <Windows.h>

// The new opcodes to write into the game's code
unsigned char new_bytes[3] = { 0xDD, 0xD8, 0x90 };

442

// When our DLL is attached, first unprotect the memory responsible for
adding recoil in the game
// Then, write our new opcodes into that memory location
BOOL WINAPI D11Main(HINSTANCE hinstDLL, DWORD fdwReason, LPVOID 1pvReserved)
{

DWORD old_protect;

unsigned char* hook_location = (unsigned char*)@x45BAAD;

if (fdwReason == DLL_PROCESS_ATTACH) {
VirtualProtect((void*)hook_location, 3, PAGE_EXECUTE_READWRITE,
&old_protect);
for (int i = 0; i < sizeof(new_bytes); i++) {
*(hook_location + i) = new_bytes[i];
}
ks

return true;

A.14 Assault Cube
ESP

Referenced in Chapter 5.9.

An ESP for Assault Cube 1.2.0.2 that displays information about enemy players above
their heads.

It works by iterating over the enemy list and calculating the yaw and pitch required to
aim at that enemy using arctangents. This part of the code is taken from the aimbot
code.

The difference between the calculated yaw and pitch and our player's yaw and pitch is
then used to derive the screen coordinates of the enemy. This is done by adding the
difference multiplied by a scaling factor to the middle of the screen.

443

This must be injected into the Assault Cube process to work. One way to do this is to
use a DLL injector. Another way is to enable Applnit_DLLs in the registry.

#include <Windows.h>
#include <math.h>

// The atan2f function produces a radian. To convert it to degrees, we need
the value of pi

#define M_PI 3.14159265358979323846

// The maximum amount of players in an Assault Cube

#define MAX_PLAYERS 32

// The player structure for every player in the game
struct Player {
char unknownl[4];
float x;
float y;
float z;
char unknown2[0x30];
float yaw;
float pitch;
char unknown3[@x1DD];
char name[16];

s

// Our player
Player* player = NULL;

DWORD ret_address = 0x0040BES83;
DWORD text_address = 0x419880;

// Our temporary variables for our print text code cave

const char* text = ;
const char* empty_text = "";

DWORD x
DWORD y

0;
0;

// List of calculated ESP values

DWORD x_values[MAX_PLAYERS] = { 0 };
DWORD y_values[MAX_PLAYERS] = { 0 };
char* names[MAX_PLAYERS] = { NULL };

int* current_players;

444

// Our code cave responsible for printing text
__declspec(naked) void codecave() {
current_players = (int*)(0x50F500);

// First, recreate the original function we hooked but set the text to
empty
__asm {
mov ecx, empty_text
call text_address
pushad

¥

// Next, loop through all the current players in the game
for (int i = 1; i < *current_players; i++) {
// Store the calculated screen positions in temporary variables
x = x_values[i];
y = y_values[i];
text = names[i];

// Make sure our text is on screen

if (x>2400 11 x <@ 1 y<0Ily>1800) {
_tex_t = llll;

3
X += 200;

// Invoke the print text function to display the text

__asm {
mov ecx, text
push y
push x
call text_address
add esp, 8
ks
}
// Restore the registers and jump back to the original code
__asm {
popad

jmp ret_address

}

// This thread contains all of the code for calculating our ESP screen
positions

445

void injected_thread() {
while (true) {

// First, grab the current position and view angles of our player
DWORD* player_offset = (DWORD*)(@x509B74);
player = (Player*)(*player_offset);

// Then, get the current number of players in the game
current_players = (int*)(0x50F500);

// Iterate through all active enemies

for (int i = 1; i < *current_players; i++) {
DWORD* enemy_list = (DWORD*)(@x50F4F8);
DWORD* enemy_offset = (DWORD*)(*enemy_list + (i*4));
Player* enemy = (Player*)(*enemy_offset);

// Make sure the enemy is valid
if (player != NULL && enemy != NULL) {
// Calculate the absolute position of the enemy away

from us to ensure that our future calculations are correct and based

// around the origin

float abspos_x = enemy->x - player->x;
float abspos_y = enemy->y - player->y;
float abspos_z = enemy->z - player->z;

// Calculate the yaw

float azimuth_xy = atan2f(abspos_y, abspos_x);

// Convert to degrees

float yaw = (float)(azimuth_xy * (180.0 / M_PI));
// Add 90 since the game assumes direct north is 90

yaw += 90;

// Calculate the difference between our current yaw

and the calculated yaw to the enemy

float yaw_dif = player->yaw - yaw;

// If we are near the 275 angle boundary, our yaw_dif

will be too large, causing our text to appear incorrectly

// To compensate for that, subtract the yaw_dif from

3060 if it is over 180, since our viewport can never show 180 degrees

if (yaw_dif > 180) {
yow_dif = yaw_dif - 360;
}

if (yaw_dif < -180) {

446

yaw_dif = yaw_dif + 360;
}

// Calculate our X value by adding the yaw_dif times

a scaling factor to the center of the screen horizontally (1200)
x_values[i] = (DWORD)(1200 + (yaw_dif * -30));

// Calculate the pitch
// Since Z values are so limited, pick the larger
between x and y to ensure that we
// don't look straight at the air when close to an
enemy
if (abspos_y < @) {
abspos_y *= -1;
ks
if (abspos_y < 5) {
if (abspos_x < @) {
abspos_x *= -1;
}
abspos_y = abspos_x;
ks
float azimuth_z = atan2f(abspos_z, abspos_y);
// Covert the value to degrees
float pitch = (float)(azimuth_z * (180.0 / M_PI));

// Same as above but for pitch
float pitch_dif = player->pitch - pitch;

// Calculate our Y value by adding the pitch_dif
times a scaling factor to the center of the screen vertically (900)
y_values[i] = (DWORD)(900 + ((pitch_dif) * 25));

// Set the name to the enemy name
names[i] = enemy->name;

}

// So our thread doesn't constantly run, we have it pause
execution for a millisecond.

// This allows the processor to schedule other tasks.

Sleep(l);

447

// When our DLL is loaded, create a thread in the process that will handle
the aimbot code
// Then, create a code cave for our print text function
BOOL WINAPI D11Main(HINSTANCE hinstDLL, DWORD fdwReason, LPVOID 1pvReserved)
{

DWORD old_protect;

unsigned char* hook_location = (unsigned char*)0x0040BE7E;

if (fdwReason == DLL_PROCESS_ATTACH) {
CreateThread(NULL, @, (LPTHREAD_START_ROUTINE)injected_thread,
NULL, @, NULL);

VirtualProtect((void*)hook_location, 5, PAGE_EXECUTE_READWRITE,
&old_protect);
*hook_location = OxE9;
(DWORD)(hook_location + 1) = (DWORD)&codecave -
((DWORD)hook_location + 5);
ks

return true;

A.15 Assault Cube
Multihack

Referenced in Chapter 5.10.

Combined

The initial starting point of the multihack code, in which we combine all the various
source code we had from the previous lessons into one massive file.

#include <Windows.h>
#include <math.h>

448

#define M_PI 3.14159265358979323846
#define MAX_PLAYERS 32

HMODULE openGLHandle = NULL;

void(__stdcall* glDepthFunc)(unsigned int) = NULL;
unsigned char* opengl_hook_location;

DWORD opengl_ret_address = 0;

DWORD triggerbot_ori_call_address
DWORD triggerbot_ori_jump_address
INPUT input = { 0 };
DWORD edi_value = 0;

0x4607C0;
0x0040ADAZ ;

// The player structure for every player in the game
struct Player {
char unknownl[4];
float x;
float y;
float z;
char unknown2[0x30];
float yaw;
float pitch;
char unknown3[@x1DD];
char name[16];
char unknown4[0x103];
int dead;

+s

// Our player
Player* player = NULL;

DWORD esp_ret_address = Ox0040BE8&3;
DWORD text_address = 0x419880;

// Our temporary variables for our print text code cave

const char* text = ;
const char* empty_text = "";

DWORD x
DWORD y

0;
0;

// List of calculated ESP values

DWORD x_values[MAX_PLAYERS] = { 0 };
DWORD y_values[MAX_PLAYERS] = { @ };
char* names[MAX_PLAYERS] = { NULL };

449

int* current_players;
DWORD old_protect;

// Function to calculate the euclidean distance between two points
float euclidean_distance(float x, float y) {

return sqrtf((x * x) + (y * y));
ks

// Code cave responsible for disabling depth testing on models
__declspec(naked) void opengl_codecave() {
__asm {
pushad
ks

(*glDepthFunc)(0x207);

// Restore the original instruction and jump back
__asm {

popad

mov esi, dword ptr ds : [esi + OxAl8]

jmp opengl_ret_address

}

// The injected thread responsible for creating our hooks for OpenGL
void opengl_thread() {
while (true) {

// Since OpenGL will be loaded dynamically into the process, our
thread needs to wait

// until it sees that the OpenGL module has been loaded.

if (openGLHandle == NULL) {

openGLHandle = GetModuleHandle(L"opengl32.d11");

¥

if (openGLHandle != NULL && glDepthFunc == NULL) {
glDepthFunc = (void(__stdcall*)(unsigned
int))GetProcAddress(openGLHandle, "glDepthFunc");

// Then we find the location of glDrawElements and offset
to an instruction that is easy to hook

opengl_hook_location = (unsigned
char*)GetProcAddress(openGLHandle, "glDrawElements");

opengl_hook_location += 0x16;

450

// For the hook, we unprotect the memory at the code we
wish to write at

// Then set the first opcode to E9, or jump

// Caculate the location using the formula: new_location -
original_location+5

// And finally, since the first original instructions
totalled 6 bytes, NOP out the last remaining byte

VirtualProtect((void*)opengl_hook_location, 5,
PAGE_EXECUTE_READWRITE, &old_protect);

*opengl_hook_location = OxE9;

(DWORD)(opengl_hook_location + 1) =
(DWORD)&opengl_codecave - ((DWORD)opengl_hook_location + 5);

*(opengl_hook_location + 5) = 0x90;

// Since OpenGL is loaded dynamically, we need to
dynamically calculate the return address
opengl_ret_address = (DWORD)(opengl_hook_location + 0x6);
3
else {
break;

}

// So our thread doesn't constantly run, we have it pause
execution for a millisecond.

// This allows the processor to schedule other tasks.

Sleep(1);

¥

// Our triggerbot code cave
__declspec(naked) void triggerbot_codecave() {
// Asm blocks allow you to write pure assembly
// In this case, we use it to call the function we hooked and save all
the registers
// After we make the call, we move its return value in eax into a
variable
__asm {
call triggerbot_ori_call_address
pushad
mov edi_value, eax

}

// If the result of the call is not zero, then we are looking at a
player

451

// Create a mouse event to simulate the left mouse button being pressed
down and send it to the game
// Otherwise, raise the mouse button up so we stop firing
if (edi_value '= @) {
input.type = INPUT_MOUSE;
input.mi.dwFlags = MOUSEEVENTF_LEFTDOWN;
SendInput(l, &input, sizeof(INPUT));
}
else {
input.type = INPUT_MOUSE;
input.mi.dwFlags = MOUSEEVENTF_LEFTUP;
SendInput(l, &input, sizeof(INPUT));
}

// Restore the registers and jump back to original code
_asm {

popad

jmp triggerbot_ori_jump_address

¥

// Our code cave responsible for printing text
__declspec(naked) void esp_codecave() {
current_players = (int*)(0x50F500);

// First, recreate the original function we hooked but set the text to
empty
__asm {
mov ecx, empty_text
call text_address
pushad

¥

// Next, loop through all the current players in the game
for (int i = 1; i < *current_players; i++) {
// Store the calculated screen positions in temporary variables
x = x_values[i];
y = y_values[i];
text = names[i];

// Make sure our text is on screen
if (x >2400 |1 x <@ 1ly<0 1l y> 1800) {
text = "";

¥

452

// Invoke the print text function to display the text

__asm {
mov ecx, text
push y
push x
call text_address
add esp, 8
}
ks
// Restore the registers and jump back to the original code
__asm {
popad

jmp esp_ret_address

}

// This thread contains all of our aimbot and ESP code
void aimbot_thread() {

while (true) {
// First, grab the current position and view angles of our player
DWORD* player_offset = (DWORD*)(@x509B74);
player = (Player*)(*player_offset);

// Then, get the current number of players in the game
int* current_players = (int*)(@x50F500);

// These variables will be used to hold the closest enemy to us
float closest_player = -1.0f;

float closest_yaw = 0.0f;

float closest_pitch = 0.0f;

// Iterate through all active enemies

for (int i = @; i < *current_players; i++) {
DWORD* enemy_list = (DWORD*)(@x50F4F8);
DWORD* enemy_offset = (DWORD*)(*enemy_list + (i * 4));
Player* enemy = (Player*)(*enemy_offset);

// Make sure the enemy is valid and alive
if (player != NULL && enemy != NULL) {

// Calculate the absolute position of the enemy away
from us to ensure that our future calculations are correct and based
// around the origin

453

float abspos_x = enemy->x - player->x;
float abspos_y = enemy->y - player->y;
float abspos_z = enemy->z - player->z;

// Calculate our distance from the enemy

float temp_distance = euclidean_distance(abspos_x,
abspos_y);

// If this is the closest enemy so far, calculate the
yaw and pitch to aim at them

float azimuth_xy = atan2f(abspos_y, abspos_x);
float yaw = (float)(azimuth_xy * (180.0 / M_PI));
yaw += 90;

// Calculate the difference between our current yaw
and the calculated yaw to the enemy
float yaw_dif = player->yaw - yaw;

// If we are near the 275 angle boundary, our yaw_dif
will be too large, causing our text to appear incorrectly
// To compensate for that, subtract the yaw_dif from
300 if it is over 180, since our viewport can never show 180 degrees
if (yaw_dif > 180) {
yow_dif = yaw_dif - 360;
ks

180) {
yoaw_dif + 360;

if (yaw_dif <
yaw_dif

¥

// Calculate our X value by adding the yaw_dif times
a scaling factor to the center of the screen horizontally (1200)
x_values[i] = (DWORD)(1200 + (yaw_dif * -30));

// Calculate the pitch
// Since Z values are so limited, pick the larger
between x and y to ensure that we
// don't look straight at the air when close to an
enemy
if (abspos_y < @) {
abspos_y *= -1;
ks
if (abspos_y < 5) {
if (abspos_x < @) {
abspos_x *= -1;

454

ks

abspos_y = abspos_x;
ks
float azimuth_z = atan2f(abspos_z, abspos_y);
float pitch = (float)(azimuth_z * (180.0 / M_PI));
// Same as above but for pitch
float pitch_dif = player->pitch - pitch;

// Calculate our Y value by adding the pitch_dif
times a scaling factor to the center of the screen vertically (900)
y_values[i] = (DWORD)(900 + ((pitch_dif) * 25));

// Set the name to the enemy name
names[i] = enemy->name;

if ((closest_player == -1.0f || temp_distance <
closest_player) && !enemy->dead) {
closest_player = temp_distance;
closest_yaw = yaw;
closest_pitch = pitch;

¥

// When our loop ends, set our yaw and pitch to the closst values
player->yaw = closest_yaw;
player->pitch = closest_pitch;

// So our thread doesn't constantly run, we have it pause
execution for a millisecond.

// This allows the processor to schedule other tasks.

Sleep(l);

}

// When our DLL is loaded, create a thread in the process to create the hook
// We need to do this as our DLL might be loaded before OpenGL is loaded by
the process
// Also create the aimbot and ESP thread and hook the locations for the
triggerbot and printing text
BOOL WINAPI D11Main(HINSTANCE hinstDLL, DWORD fdwReason, LPVOID 1pvReserved)
{
unsigned char* triggerbot_hook_location = (unsigned char*)@x0040AD9D;
unsigned char* esp_hook_location = (unsigned char*)0x0040BE7E;

455

if (fdwReason == DLL_PROCESS_ATTACH) {
CreateThread(NULL, @, (LPTHREAD_START_ROUTINE)opengl_thread,
NULL, @, NULL);
CreateThread(NULL, @, (LPTHREAD_START_ROUTINE)aimbot_thread,
NULL, @, NULL);

VirtualProtect((void*)triggerbot_hook_location, 5,
PAGE_EXECUTE_READWRITE, &old_protect);

*triggerbot_hook_location = OxE9;

(DWORD)(triggerbot_hook_location + 1) =
(DWORD)&triggerbot_codecave - ((DWORD)triggerbot_hook_location + 5);

VirtualProtect((void*)esp_hook_location, 5,
PAGE_EXECUTE_READWRITE, &old_protect);

*esp_hook_location = OxE9;

(DWORD)(esp_hook_location + 1) = (DWORD)&esp_codecave -
((DWORD)esp_hook_location + 5);

}

return true;

First Refactor

Our first refactor of the multihack code, in which we break out the triggerbot
functionality to its own class.

Header/Triggerbot.h

#pragma once
#include <Windows.h>

class Triggerbot {

private:
INPUT input = { 0 };
public:
Triggerbot();
void execute(int isLookingAtEnemy);
s
Source/Triggerbot.cpp

456

#include <Windows.h>
#include "Triggerbot.h"

Triggerbot::Triggerbot() {
input = { 0 };
ks

// If isLookingAtEnemy is not zero, then we are looking at a player
// Create a mouse event to simulate the left mouse button being pressed down
and send it to the game
// Otherwise, raise the mouse button up so we stop firing
void Triggerbot::execute(int isLookingAtEnemy) {
if (isLookingAtEnemy != @) {

input.type = INPUT_MOUSE;

input.mi.dwFlags = MOUSEEVENTF_LEFTDOWN;

SendInput(l, &input, sizeof(INPUT));

ks

else {
input.type = INPUT_MOUSE;
input.mi.dwFlags = MOUSEEVENTF_LEFTUP;
SendInput(l, &input, sizeof(INPUT));

}

Source/main.cpp

#include <Windows.h>
#include <math.h>

#include "Triggerbot.h"

#define M_PI 3.14159265358979323846
#define MAX_PLAYERS 32

// Our triggerbot class
Triggerbot *triggerbot;

HMODULE openGLHandle = NULL;

void(__stdcall* glDepthFunc)(unsigned int) = NULL;
unsigned char* opengl_hook_location;

DWORD opengl_ret_address = 0;

DWORD triggerbot_ori_call_address = 0x4607(C0;

457

DWORD triggerbot_ori_jump_address = 0x0040ADAZ;
DWORD edi_value = 0;

// The player structure for every player in the game
struct Player {
char unknownl[4];
float x;
float y;
float z;
char unknown2[0x30];
float yaw;
float pitch;
char unknown3[@x1DD];
char name[16];
char unknown4[0x103];
int dead;

s

// Our player
Player* player = NULL;

DWORD esp_ret_address = 0x0040BES3;
DWORD text_address = 0x419880;

// Our temporary variables for our print text code cave

const char* text = ;
const char* empty_text = "";

DWORD X
DWORD y

0,
0

// List of calculated ESP values

DWORD x_values[MAX_PLAYERS] = { 0 };
DWORD y_values[MAX_PLAYERS] = { @ };
char* names[MAX_PLAYERS] = { NULL };

int* current_players;

DWORD old_protect;

// Function to calculate the euclidean distance between two points
float euclidean_distance(float x, float y) {

return sqrtf((x * x) + (y * y));
}

458

// Our glDrawElements code cave responsible for our wallhack
__declspec(naked) void opengl_codecave() {
__asm {
pushad

3
(*glDepthFunc)(0x207);

// Finally, restore the original instruction and jump back
__asm {

popad

mov esi, dword ptr ds : [esi + OxA18]

jmp opengl_ret_address

}

// The injected thread responsible for creating our OpenGL hooks
void opengl_thread() {
while (true) {
// Since OpenGL will be loaded dynamically into the process, our
thread needs to wait
// until it sees that the OpenGL module has been loaded.
if (openGLHandle == NULL) {
openGLHandle = GetModuleHandle(L"opengl32.dl1");
}

if (openGLHandle != NULL && glDepthFunc == NULL) {
glDepthFunc = (void(__stdcall*)(unsigned
int))GetProcAddress(openGLHandle, "glDepthFunc™);

// Then we find the location of glDrawElements and offset
to an instruction that is easy to hook

opengl_hook_location = (unsigned
char*)GetProcAddress(openGLHandle, "glDrawElements");

opengl_hook_location += 0x16;

// For the hook, we unprotect the memory at the code we
wish to write at

// Then set the first opcode to E9, or jump

// Caculate the location using the formula: new_location -
original_location+5

// And finally, since the first original instructions
totalled 6 bytes, NOP out the last remaining byte

VirtualProtect((void*)opengl_hook_location, 5,
PAGE_EXECUTE_READWRITE, &old_protect);

459

*opengl_hook_location = OxE9;

(DWORD)(opengl_hook_location + 1) =
(DWORD)&opengl_codecave - ((DWORD)opengl_hook_location + 5);

*(opengl_hook_location + 5) = 0x90;

// Since OpenGL is loaded dynamically, we need to
dynamically calculate the return address
opengl_ret_address = (DWORD)(opengl_hook_location + 0x6);
ks
else {
break;

}

// So our thread doesn't constantly run, we have it pause
execution for a millisecond.

// This allows the processor to schedule other tasks.

Sleep(l);

}

// Our triggerbot code cave
__declspec(naked) void triggerbot_codecave() {
// Restore the original call and get the value of edi, which holds
whether we are looking at a player
__asm {
call triggerbot_ori_call_address
pushad
mov edi_value, eax

¥

// Pass this information off to the triggerbot instance to determine
what to do
triggerbot->execute(edi_value);

// Restore the registers and jump back to original code
_asm {

popad

jmp triggerbot_ori_jump_address

}

// Our code cave responsible for printing text
__declspec(naked) void esp_codecave() {
current_players = (int*)(0x50F500);

460

// First, recreate the original function we hooked but set the text to
empty
__asm {
mov ecx, empty_text
call text_address
pushad
}

// Next, loop through all the current players in the game
for (int i = 1; 1 < *current_players; i++) {
// Store the calculated screen positions in temporary variables
x = x_values[i];
y = y_values[i];
text = names[i];

// Make sure our text is on screen
if (x>2400 1]l x <@ Il y<0 Ily>1800) {
text = "";

}

// Invoke the print text function to display the text
__asm {

mov ecx, text

push y

push x

call text_address

add esp, 8

¥

// Restore the registers and jump back to the original code
__asm {

popad

jmp esp_ret_address

}

// This thread contains all of our aimbot and ESP code
void aimbot_thread() {

while (true) {
// First, grab the current position and view angles of our player
DWORD* player_offset = (DWORD*)(@x509B74);
player = (Player*)(*player_offset);

461

// Then, get the current number of players in the game
int* current_players = (int*)(0@x50F500);

// These variables will be used to hold the closest enemy to us
float closest_player = -1.0f;

float closest_yaw = 0.0f;

float closest_pitch = 0.0f;

// Iterate through all active enemies

for (int i = @; 1 < *current_players; i++) {
DWORD* enemy_list = (DWORD*)(@x50F4F8);
DWORD* enemy_offset = (DWORD*)(*enemy_list + (i * 4));
Player* enemy = (Player*)(*enemy_offset);

// Make sure the enemy is valid and alive
if (player != NULL && enemy != NULL) {

// Calculate the absolute position of the enemy away

from us to ensure that our future calculations are correct and based

abspos_y);

// around the origin

float abspos_x = enemy->x - player->x;
float abspos_y = enemy->y - player->y;
float abspos_z = enemy->z - player->z;

// Calculate our distance from the enemy
float temp_distance = euclidean_distance(abspos_x,

// If this is the closest enemy so far, calculate the

yaw and pitch to aim at them

float azimuth_xy = atan2f(abspos_y, abspos_x);
float yaw = (float)(azimuth_xy * (180.0 / M_PI));
yaw += 90;

// Calculate the difference between our current yaw

and the calculated yaw to the enemy

float yaw_dif = player->yaw - yaw;

// If we are near the 275 angle boundary, our yaw_dif

will be too large, causing our text to appear incorrectly

// To compensate for that, subtract the yaw_dif from

360 if it is over 180, since our viewport can never show 180 degrees

if (yaw_dif > 180) {
yow_dif = yaw_dif - 360;
ks

462

if (yaw_dif < -180) {
yow_dif = yaw_dif + 360;
}

// Calculate our X value by adding the yaw_dif times

a scaling factor to the center of the screen horizontally (1200)
x_values[i] = (DWORD)(1200 + (yaw_dif * -30));

// Calculate the pitch
// Since Z values are so limited, pick the larger
between x and y to ensure that we
// don't look straight at the air when close to an
enemy
if (abspos_y < @) {
abspos_y *= -1;
}
if (abspos_y < 5) {
if (abspos_x < @) {
abspos_x *= -1;
ks
abspos_y = abspos_x;
}
float azimuth_z = atan2f(abspos_z, abspos_y);
float pitch = (float)(azimuth_z * (180.0 / M_PI));
// Same as above but for pitch
float pitch_dif = player->pitch - pitch;

// Calculate our Y value by adding the pitch_dif
times a scaling factor to the center of the screen vertically (900)
y_values[i] = (DWORD)(900 + ((pitch_dif) * 25));

// Set the name to the enemy name
names[i] = enemy->name;

if ((closest_player == -1.0f || temp_distance <
closest_player) && !enemy->dead) {
closest_player = temp_distance;
closest_yaw = yaw;
closest_pitch = pitch;

}

// When our loop ends, set our yaw and pitch to the closst values

463

player->yaw = closest_yaw;
player->pitch = closest_pitch;

// So our thread doesn't constantly run, we have it pause
execution for a millisecond.

// This allows the processor to schedule other tasks.

Sleep(1);

}

// When our DLL is loaded, create a thread in the process to create the hook
// We need to do this as our DLL might be loaded before OpenGL is loaded by
the process
// Also create the aimbot and ESP thread and hook the locations for the
triggerbot and printing text
BOOL WINAPI D11Main(HINSTANCE hinstDLL, DWORD fdwReason, LPVOID 1pvReserved)
{
unsigned char* triggerbot_hook_location = (unsigned char*)0x0040AD9D;
unsigned char* esp_hook_location = (unsigned char*)0x0040BE7E;

if (fdwReason == DLL_PROCESS_ATTACH) {
// Create our triggerbot
triggerbot = new Triggerbot();

CreateThread(NULL, @, (LPTHREAD_START_ROUTINE)opengl_thread,
NULL, @, NULL);

CreateThread(NULL, @, (LPTHREAD_START_ROUTINE)aimbot_thread,
NULL, @, NULL);

VirtualProtect((void*)triggerbot_hook_location, 5,
PAGE_EXECUTE_READWRITE, &old_protect);

*triggerbot_hook_location = OxE9;

(DWORD)(triggerbot_hook_location + 1) =
(DWORD)&triggerbot_codecave - ((DWORD)triggerbot_hook_location + 5);

VirtualProtect((void*)esp_hook_location, 5,
PAGE_EXECUTE_READWRITE, &old_protect);
*esp_hook_location = OxE9;
(DWORD)(esp_hook_location + 1) = (DWORD)&esp_codecave -
((DWORD)esp_hook_location + 5);
}
else if (fdwReason == DLL_PROCESS_DETACH) {
delete triggerbot;

¥

464

return true;

Refactor Finished

The complete code for the multihack after the refactor is finished.
Header/Triggerbot.h - Unchanged from First Refactor

Header/constants.h

#pragma once
#include <Windows.h>

DWORD triggerbot_ori_call_address
DWORD triggerbot_ori_jump_address

0x4607C0;
0x0040ADAZ ;

DWORD esp_ret_address = Ox0040BE8&3;
DWORD text_address = 0x419880;

[{all

const char* empty_text = ;

Header/PlayerGeometry.h

#pragma once
#include <Windows.h>

#define M_PI 3.14159265358979323846
#define MAX_PLAYERS 32

// The player structure for every player in the game
struct Player {

char unknownl[4];

float x;

float y;

float z;

char unknown2[0x30] ;

float yaw;

float pitch;

char unknown3[0x1DD];

465

char name[16];
char unknown4[0x103];
int dead;

s

class PlayerGeometry {

private:
DWORD player_offset_address;
DWORD enemy_list_address;
DWORD current_players_address;

float closest_yaw;
float closest_pitch;

Player* player;

float euclidean_distance(float, float);
public:

DWORD x_values[MAX_PLAYERS] = { 0 };

DWORD y_values[MAX_PLAYERS] = { @ };

char* names[MAX_PLAYERS] = { NULL };

int* current_players;

PlayerGeometry(DWORD, DWORD, DWORD);
void update();
void set_player_view();

s

Source/Triggerbot.cpp - Unchanged from First Refactor

Source/PlayerGeometry.cpp

#include <Windows.h>
#include <math.h>

#include "PlayerGeometry.h"

PlayerGeometry: :PlayerGeometry(DWORD p_address, DWORD e_address, DWORD
cp_address) {

player_offset_address = p_address;

enemy_list_address = e_address;

current_players_address = cp_address;

466

// Function to calculate the euclidean distance between two points

float PlayerGeometry::euclidean_distance(float x, float y) {
return sqrtf((x * x) + (y * y));

}

void PlayerGeometry: :update() {
// First, grab the current position and view angles of our player
DWORD* player_offset = (DWORD*)(player_offset_address);
player = (Player*)(*player_offset);

// Then, get the current number of players in the game
current_players = (int*)(0x50F500);

float closest_player = -1.0f;
closest_yaw = 0.0f;
closest_pitch = 0.0f;

// Iterate through all active enemies

for (int i = @; 1 < *current_players; i++) {
DWORD* enemy_list = (DWORD*)(@x50F4F8);
DWORD* enemy_offset = (DWORD*)(*enemy_list + (i * 4));
Player* enemy = (Player*)(*enemy_offset);

// Make sure the enemy is valid and alive
if (player != NULL && enemy != NULL) {

// Calculate the absolute position of the enemy away from

us to ensure that our future calculations are correct and based
// around the origin
float abspos_x = enemy->x - player->Xx;
float abspos_y = enemy->y - player->y;
float abspos_z = enemy->z - player->z;

// Calculate our distance from the enemy
float temp_distance = euclidean_distance(abspos_x,
abspos_y);

// If this is the closest enemy so far, calculate the yaw

and pitch to aim at them

float azimuth_xy = atan2f(abspos_y, abspos_x);
float yaw = (float)(azimuth_xy * (180.0 / M_PI));
yaw += 90;

// Calculate the difference between our current yaw and the

calculated yaw to the enemy

467

float yaw_dif = player->yaw - yaw;

// If we are near the 275 angle boundary, our yaw_dif will
be too large, causing our text to appear incorrectly
// To compensate for that, subtract the yaw_dif from 360 if
it is over 180, since our viewport can never show 180 degrees
if (yaw_dif > 180) {
yow_dif = yaw_dif - 360;
ks

if (yaw_dif < -180) {
yow_dif = yaw_dif + 360;
}

// Calculate our X value by adding the yaw_dif times a
scaling factor to the center of the screen horizontally (1200)
x_values[i] = (DWORD)(1200 + (yaw_dif * -30));

// Calculate the pitch
// Since Z values are so limited, pick the larger between x
and y to ensure that we

// don't look straight at the air when close to an enemy
if (abspos_y < @) {

abspos_y *= -1;
}
if (Cabspos_y < 5) {

if (abspos_x < @) {

abspos_x *= -1;

}

abspos_y = abspos_x;
}
float azimuth_z = atan2f(abspos_z, abspos_y);
float pitch = (float)(azimuth_z * (180.0 / M_PI));
// Same as above but for pitch
float pitch_dif = player->pitch - pitch;

// Calculate our Y value by adding the pitch_dif times a
scaling factor to the center of the screen vertically (900)
y_values[i] = (DWORD)(900 + ((pitch_dif) * 25));

// Set the name to the enemy name
names[i] = enemy->name;

if ((closest_player == -1.0f || temp_distance <
closest_player) && !enemy->dead) {

468

closest_player = temp_distance;
closest_yaw = yaw;
closest_pitch = pitch;

}

void PlayerGeometry::set_player_view() {
player->yaw = closest_yaw;
player->pitch = closest_pitch;

Source/main.cpp

#include <Windows.h>

#include "constants.h"
#include "Triggerbot.h"
#include "PlayerGeometry.h"

Triggerbot *triggerbot;
PlayerGeometry *playerGeometry;

HMODULE openGLHandle = NULL;
void(__stdcall* glDepthFunc)(unsigned int) = NULL;
DWORD opengl_ret_address = 0;

DWORD edi_value = 0;

// Our temporary variables for our print text code cave

const char* text = ;

DWORD x;
DWORD y;

DWORD old_protect;

// Code cave responsible for disabling depth testing on
__declspec(naked) void opengl_codecave() {
__asm {
pushad

}

models

469

(*glDepthFunc)(0x207);

// Finally, restore the original instruction and jump back
__asm {

popad

mov esi, dword ptr ds : [esi + OxA18]

jmp opengl_ret_address

}

// Code cave responsible for our triggerbot
__declspec(naked) void triggerbot_codecave() {
// Asm blocks allow you to write pure assembly
// In this case, we use it to call the function we hooked and save all
the registers
// After we make the call, we move its return value in eax into a
variable
__asm {
call triggerbot_ori_call_address
pushad
mov edi_value, eax

}

triggerbot->execute(edi_value);

// Restore the registers and jump back to original code
_asm {

popad

jmp triggerbot_ori_jump_address

}

// Our code cave responsible for printing text
__declspec(naked) void text_codecave() {
// First, recreate the original function we hooked but set the text to
empty
__asm {
mov ecx, empty_text
call text_address
pushad

¥

// Next, loop through all the current players in the game
for (int i = 1; i < *playerGeometry->current_players; i++) {
// Store the calculated screen positions in temporary variables

470

x = playerGeometry->x_values[i];
y = playerGeometry->y_values[i];
text = playerGeometry->names[i];

// Make sure our text is on screen
if (x >2400 11 x <@ 11ly<01ly> 1800) {

text = "";
}
// Invoke the print text function to display the text
__asm {
mov ecx, text
push y
push x
call text_address
add esp, 8
}
ks
// Restore the registers and jump back to the original code
__asm {
popad

jmp esp_ret_address

}

// This thread contains all of our aimbot, ESP, and OpenGL hooking code
void injected_thread() {

while (true) {
if (openGLHandle == NULL) {
openGLHandle = GetModuleHandle(L"opengl32.d11");
ks

if (openGLHandle != NULL && glDepthFunc == NULL) {
glDepthFunc = (void(__stdcall*)(unsigned
int))GetProcAddress(openGLHandle, "glDepthFunc");

// Then we find the location of glDrawElements and offset
to an instruction that is easy to hook

unsigned char *opengl_hook_location = (unsigned
char*)GetProcAddress(openGLHandle, "glDrawElements");

opengl_hook_location += 0x16;

471

// For the hook, we unprotect the memory at the code we
wish to write at

// Then set the first opcode to E9, or jump

// Caculate the location using the formula: new_location -
original_location+5

// And finally, since the first original instructions
totalled 6 bytes, NOP out the last remaining byte

VirtualProtect((void*)opengl_hook_location, 5,
PAGE_EXECUTE_READWRITE, &old_protect);

*opengl_hook_location = OxE9;

(DWORD)(opengl_hook_location + 1) =
(DWORD)&opengl_codecave - ((DWORD)opengl_hook_location + 5);

*(opengl_hook_location + 5) = 0x90;

// Since OpenGL is loaded dynamically, we need to
dynamically calculate the return address
opengl_ret_address = (DWORD)(opengl_hook_location + 0x6);

}

playerGeometry->update();
playerGeometry->set_player_view();

// So our thread doesn't constantly run, we have it pause
execution for a millisecond.

// This allows the processor to schedule other tasks.

Sleep(l);

}

// When our DLL is loaded, create a thread in the process to create the hook
// We need to do this as our DLL might be loaded before OpenGL is loaded by
the process
// Also create the aimbot and ESP thread and hook the locations for the
triggerbot and printing text
BOOL WINAPI D11Main(HINSTANCE hinstDLL, DWORD fdwReason, LPVOID 1pvReserved)
{
unsigned char* triggerbot_hook_location = (unsigned char*)0x0040AD9D;
unsigned char* text_hook_location = (unsigned char*)0x0040BE7E;

if (fdwReason == DLL_PROCESS_ATTACH) {
triggerbot = new Triggerbot();
playerGeometry = new PlayerGeometry(@x509B74, Ox50F4F8,
0x50F500) ;

472

CreateThread(NULL, @, (LPTHREAD_START_ROUTINE)injected_thread,
NULL, @, NULL);

VirtualProtect((void*)triggerbot_hook_location, 5,
PAGE_EXECUTE_READWRITE, &old_protect);

*triggerbot_hook_location = OxE9;

(DWORD)(triggerbot_hook_location + 1) =
(DWORD)&triggerbot_codecave - ((DWORD)triggerbot_hook_location + 5);

VirtualProtect((void*)text_hook_location, 5,
PAGE_EXECUTE_READWRITE, &old_protect);
*text_hook_location = OxE9;
(DWORD)(text_hook_location + 1) = (DWORD)&text_codecave -
((DWORD)text_hook_location + 5);
ks
else if (fdwReason == DLL_PROCESS_DETACH) {
delete triggerbot;
delete playerGeometry;

}

return true;

Finished

A multihack for Assault Cube 1.2.0.2 that contains the following features:

e Wallhack
. ESP
e Aimbot

» Triggerbot

It also has an interactive menu that allows these features to be toggled on and off. Use
the up and down arrows to change the selection, and the left and right arrows to
toggle the features.

This must be injected into the Assault Cube process to work. One way to do this is to
use a DLL injector. Another way is to enable ApplInit_DLLs in the registry.

Header/PlayerGeometry.h - Unchanged from “Refactor Finished”

Header/Triggerbot.h - Unchanged from “Refactor Finished”

473

Header/constants.h - Unchanged from “Refactor Finished”

Header/Menu.h

#pragma once

#define WALLHACK @
#define ESP 1
#define AIMBOT 2
#define TRIGGERBOT 3

#define MAX_ITEMS 4

class Menu {
private:

const char on_text[5] = { @xc, 0x30, '0', 'N', 0 };

const char off_text[6] = { Oxc, 0x33, '0', '"F', '"F', 0 };
public:

int cursor_position;

const char* items[MAX_ITEMS] = { "Wallhack", "ESP", "Aimbot",
"Triggerbot" };
bool item_enabled[MAX_ITEMS] = { false };

const char* cursor = ">";

Menu(Q);
void handle_input();
const char* get_state(int);

+s

Source/Triggerbot.cpp - Unchanged from “Refactor Finished”
Source/PlayerGeometry.cpp - Unchanged from “Refactor Finished”

Source/Menu.cpp

#include <Windows.h>
#include "Menu.h"
Menu: :Menu() {

cursor_position = 0;

}

474

void Menu::handle_input() {

if (GetAsyncKeyState(VK_DOWN) & 1) {
cursor_position++;
ks
else if (GetAsyncKeyState(VK_UP) & 1) {
cursor_position--;
ks
else if ((GetAsyncKeyState(VK_LEFT) & 1) || (GetAsyncKeyState(VK_RIGHT)
& 1)) {

item_enabled[cursor_position] = !item_enabled[cursor_position];

}

if (cursor_position < @) {
cursor_position = 3;
}
else if (cursor_position > 3) {
cursor_position = 0;
}
ks

const char* Menu::get_state(int item) {
return item_enabled[item] ? on_text : off_text;

}

Source/main.cpp

#include <Windows.h>

#include "constants.h"
#include "Triggerbot.h"
#include "PlayerGeometry.h"
#include "Menu.h"

Triggerbot *triggerbot;
PlayerGeometry *playerGeometry;
Menu *menu;

HMODULE openGLHandle = NULL;
void(__stdcall* glDepthFunc)(unsigned int) = NULL;
DWORD opengl_ret_address = 0;

DWORD edi_value = 0;

475

DWORD old_protect;

// Code cave responsible for disabling depth testing on models
__declspec(naked) void opengl_codecave() {
__asm {
pushad

¥

if (menu->item_enabled[WALLHACK]) {
(*glDepthFunc)(0x207);

ks
// Findlly, restore the original instruction and jump back
__asm {

popad

mov esi, dword ptr ds : [esi + OxA18]
jmp opengl_ret_address

¥

// Our triggerbot code cave
__declspec(naked) void triggerbot_codecave() {
// Asm blocks allow you to write pure assembly
// In this case, we use it to call the function we hooked and save all
the registers
// After we make the call, we move its return value in eax into a
variable
__asm {
call triggerbot_ori_call_address
pushad
mov edi_value, eax

}

if (menu->item_enabled[TRIGGERBOT]) {
triggerbot->execute(edi_value);

}

// Restore the registers and jump back to original code
_asm {

popad

jmp triggerbot_ori_jump_address

476

// A helper function for printing text
void print_text(DWORD x, DWORD y, const char* text) {
if (x >2400 11 x <@ 1l y<01ly>1800) {
text = "";

}
X += 200;

__asm {
mov ecx, text
push y
push x
call text_address
add esp, 8

}

// Our code cave responsible for printing text
__declspec(naked) void text_codecave() {
// First, recreate the original function we hooked but set the text to
empty
__asm {
mov ecx, empty_text
call text_address
pushad

¥

for (int i = 0; i < MAX_ITEMS; i++) {
print_text(50, 250 + (100 * i), menu->items[i]);
print_text(500, 250 + (100 * i), menu->get_state(i));
3

print_text(10, 250 + (100 * menu->cursor_position), menu->cursor);

if (menu->item_enabled[ESP]) {
// Next, loop through all the current players in the game
for (int i = 1; i < *playerGeometry->current_players; i++) {
print_text(playerGeometry->x_values[i], playerGeometry-
>y_values[i], playerGeometry->names[i]);

ks
}
// Restore the registers and jump back to the original code
__asm {

popad

jmp esp_ret_address

477

¥

// This thread contains all of our aimbot, ESP, and OpenGL hooking code
void injected_thread() {

while (true) {
if (openGLHandle == NULL) {
openGLHandle = GetModuleHandle(L"opengl32.dl1");

}

if (openGLHandle != NULL && glDepthFunc == NULL) {
glDepthFunc = (void(__stdcall*)(unsigned
int))GetProcAddress(openGLHandle, "glDepthFunc™);

// Then we find the location of glDrawElements and offset
to an instruction that is easy to hook

unsigned char *opengl_hook_location = (unsigned
char*)GetProcAddress(openGLHandle, "glDrawElements");

opengl_hook_location += 0x16;

// For the hook, we unprotect the memory at the code we
wish to write at

// Then set the first opcode to E9, or jump

// Caculate the location using the formula: new_location -
original_location+5

// And finally, since the first original instructions
totalled 6 bytes, NOP out the last remaining byte

VirtualProtect((void*)opengl_hook_location, 5,
PAGE_EXECUTE_READWRITE, &old_protect);

*opengl_hook_location = OxE9;

(DWORD)(opengl_hook_location + 1) =
(DWORD)&opengl_codecave - ((DWORD)opengl_hook_location + 5);

*(opengl_hook_location + 5) = 0x90;

// Since OpenGL is loaded dynamically, we need to

dynamically calculate the return address
opengl_ret_address = (DWORD)(opengl_hook_location + 0x6);

}

menu->handle_input();
playerGeometry->update();

if (menu->item_enabled[AIMBOT]) {

478

playerGeometry->set_player_view();

¥

// So our thread doesn't constantly run, we have it pause
execution for a millisecond.

// This allows the processor to schedule other tasks.

Sleep(1);

}

// When our DLL is loaded, create a thread in the process to create the hook
// We need to do this as our DLL might be loaded before OpenGL is loaded by
the process
// Also create the aimbot and ESP thread and hook the locations for the
triggerbot and printing text
BOOL WINAPI D11Main(HINSTANCE hinstDLL, DWORD fdwReason, LPVOID 1pvReserved)
{
unsigned char* triggerbot_hook_location = (unsigned char*)0x0040AD9D;
unsigned char* text_hook_location = (unsigned char*)0x0040BE7E;

if (fdwReason == DLL_PROCESS_ATTACH) {
triggerbot = new Triggerbot();
playerGeometry = new PlayerGeometry(@Ox509B74, Ox50F4F8,
Ox50F500);
menu = new Menu();

CreateThread(NULL, @, (LPTHREAD_START_ROUTINE)injected_thread,
NULL, @, NULL);

VirtualProtect((void*)triggerbot_hook_location, 5,
PAGE_EXECUTE_READWRITE, &old_protect);

*triggerbot_hook_location = OxE9;

(DWORD)(triggerbot_hook_location + 1) =
(DWORD)&triggerbot_codecave - ((DWORD)triggerbot_hook_location + 5);

VirtualProtect((void*)text_hook_location, 5,
PAGE_EXECUTE_READWRITE, &old_protect);
*text_hook_location = OxE9;
(DWORD)(text_hook_location + 1) = (DWORD)&text_codecave -
((DWORD)text_hook_location + 5);
}
else if (fdwReason == DLL_PROCESS_DETACH) {
delete triggerbot;
delete playerGeometry;
delete menu;

479

}

return true;

A.16 Wesnoth
Multiplayer Bot

Referenced in Chapter 6.2.

An example client that will connect to a local Wesnoth 1.14.9 server with the username
FFFAAAKKKEEE.

The majority of the code is based on the Winsock example provided by Microsoft:
https://docs.microsoft.com/en-us/windows/win32/winsock/complete-client-code

#include <winsock?2.h>
#include <ws2tcpip.h>
#include <stdio.h>

#pragma comment(lib, "Ws2_32.1ib")
#define DEFAULT_BUFLEN 512

int main(int argc, char** argv) {
WSADATA wsaData;
SOCKET ConnectSocket = INVALID_SOCKET;
struct addrinfo* result = NULL,
* ptr = NULL,
hints;
char recvbuf[[DEFAULT_BUFLEN];
int iResult;
int recvbuflen = DEFAULT_BUFLEN;

// The handshake initiation request
const unsigned char buff_handshake_pl[] = {
0x00, 0x00, 0x00, 0x00

480

https://docs.microsoft.com/en-us/windows/win32/winsock/complete-client-code

s

// Contains the version 1.14.9

const unsigned char buff_handshake_p2[] = {
0x00, 0x00, 0x00, Ox2f, Ox1f, Ox8b, 0x08, 0x00, O0x00, 0x00,
0x00, 0x00, 0x00, Oxff, Ox8b, Ox2e, Ox4b, Ox2d, Ox2a, Oxce,
Oxcc, Oxcf, Ox8b, Oxe5, Oxe2, Ox84, Oxb2, @xo6c, 0Ox95, OxOc,
Oxf5, Ox0c, Ox4d, Oxf4, Ox2c, 0x95, Oxb8, Oxa2, Oxf5, Oxel,
0x92, Ox5c, 0x00, Oxcd, 0x38, Oxd3, Oxd7, 0x28, Ox00, 0x00,
0x00

s

// Contains the username FFFAAAKKKEEE

const unsigned char buff_send_name[] = {
0x00, 0x00, 0x00, 0x3a, Ox1f, Ox8b, Ox08, Ox00, Ox00, 0x00,
0x00, 0x00, 0x00, Oxff, Ox8b, Oxce, 0xc9, Ox4f, Oxcf, Oxcc,
0x8b, Oxe5, Oxe2, Ox2c, 0x2d, Ox4e, Ox2d, Oxca, Ox4b, Oxcc,
0x4d, Oxb5, Ox55, Ox72, 0x73, Ox73, Ox73, Ox74, Ox74, Oxf4,
0xf6, Oxfo, Ox76, Ox75, Ox75, Ox55, Oxe2, Ox8a, Oxdo, 0x87,
Oxaa, 0xed, 0x02, 0x00, Oxal, Oxfc, 0x19, Ox4c, Ox2b, 0x00,
0x00, 0x00

s

iResult = WSAStartup(MAKEWORD(Z2, 2), &wsaData);
if (iResult '= @) {
printf("WSAStartup failed: %d\n", iResult);
return 1;

}

ZeroMemory(&hints, sizeofChints));
hints.ai_family = AF_INET;
hints.ai_socktype = SOCK_STREAM;
hints.ai_protocol = IPPROTO_TCP;

iResult = getaddrinfo("127.0.0.1", "15000", &hints, &result);
if (iResult !'= 0) {
printf("getaddrinfo failed: %d\n", iResult);

WSACleanup(Q);
return 1;

ks

ptr = result;

ConnectSocket = socket(ptr->ai_family, ptr->ai_socktype, ptr-
>ai_protocol);

481

if (ConnectSocket == INVALID_SOCKET) {
printf("Error at socket(): %ld\n", WSAGetLastError());
freeaddrinfo(result);
WSACleanup(Q);
return 1;

}

iResult = connect(ConnectSocket, ptr->ai_addr, (int)ptr->ai_addrlen);
if (iResult == SOCKET_ERROR) {

closesocket(ConnectSocket);

ConnectSocket = INVALID_SOCKET;

}

freeaddrinfo(result);

if (ConnectSocket == INVALID_SOCKET) {
printf("Unable to connect to server!\n");
WSACleanup();
return 1;

}

iResult = send(ConnectSocket, (const char*)buff_handshake_p1,
(int)sizeof(buff_handshake_pl), 0);
printf("Bytes Sent: %ld\n", iResult);

iResult = recv(ConnectSocket, recvbuf, recvbuflen, 0);
printf("Bytes received: %d\n", iResult);

iResult = send(ConnectSocket, (const char*)buff_handshake_p2,
(int)sizeof(buff_handshake_p2), 0);
printf("Bytes Sent: %ld\n", iResult);

iResult = recv(ConnectSocket, recvbuf, recvbuflen, 0);
printf("Bytes received: %d\n", iResult);

iResult = send(ConnectSocket, (const char*)buff_send_name,
(int)sizeof(buff_send_name), @);
printf("Bytes Sent: %ld\n", iResult);

do {
iResult = recv(ConnectSocket, recvbuf, recvbuflen, 0);
if (iResult > @)
printf("Bytes received: %d\n", iResult);
else if (iResult == 0)

482

printf("Connection closed\n");
else
printf("recv failed with error: %d\n", WSAGetLastError());
} while (iResult > 0);

closesocket(ConnectSocket);
WSACleanup(Q);

return 0;

A.17 Wesnoth
ChatBot

Referenced in Chapter 6.4.

An example chatbot that will connect to a local Wesnoth 1.14.9 server with the
username ChatBot and respond to the \wave command.

The majority of the code is based on the Winsock example provided by Microsoft:
https://docs.microsoft.com/en-us/windows/win32/winsock/complete-client-code

#finclude <stdio.h>
#include <winsock?2.h>
#include <ws2tcpip.h>

#pragma comment(lib, "Ws2_32.1ib")

#include <zlib.h>

#define DEFAULT_BUFLEN 512

void send_data(const unsigned char *data, size_t len, SOCKET s) {
gzFile temp_data = gzopen("packet.gz", "wb");

gzwrite(temp_data, data, len);
gzclose(temp_data);

483

https://docs.microsoft.com/en-us/windows/win32/winsock/complete-client-code

FILE* temp_file = NULL;
fopen_s(&temp_file, "packet.gz", "rb");

if (temp_file) {
size_t compress_len = 0;
unsigned char buffer[DEFAULT_BUFLEN] = { @ };
compress_len = fread(buffer, 1, sizeof(buffer), temp_file);
fclose(temp_file);

unsigned char buff_packet[DEFAULT_BUFLEN] = { @ };
memcpy(buff_packet + 3, &compress_len, sizeof(compress_len));
memcpy(buff_packet + 4, buffer, compress_len);

int iResult = send(s, (const char*)buff_packet, compress_len + 4,
printf("Bytes Sent: %ld\n", iResult);

}

bool parse_dataCunsigned char *buff, int buff_len) {
unsigned char data[DEFAULT_BUFLEN] = { @ };
memcpy(data, buff + 4, buff_len - 4);

FILE* temp_file = NULL;
fopen_s(&temp_file, "packet_recv.gz", "wb");

if (temp_file) {
fwrite(data, 1, sizeof(data), temp_file);
fclose(temp_file);

ks

gzFile temp_data_in = gzopen("packet_recv.gz", "rb");
unsigned char decompressed_data[DEFAULT_BUFLEN] = { 0 };
gzread(temp_data_in, decompressed_data, DEFAULT_BUFLEN);
fwrite(decompressed_data, 1, DEFAULT_BUFLEN, stdout);
gzclose(temp_data_in);

return strstr((const char*)decompressed_data, (const char*)"\\wave");

int main(int argc, char** argv) {
WSADATA wsaData;
SOCKET ConnectSocket = INVALID_SOCKET;
struct addrinfo* result = NULL,
* ptr = NULL,

0;

484

hints;
unsigned char recvbuf[DEFAULT_BUFLEN];
int iResult;
int recvbuflen = DEFAULT_BUFLEN;

// The handshake initiation request
const unsigned char buff_handshake_pl[] = {
0x00, 0x00, 0x00, 0x00

+s

iResult = WSAStartup(MAKEWORD(2, 2), &wsaData);
if (iResult !'= 0) {
printf("WSAStartup failed: %d\n", iResult);
return 1;

}

ZeroMemory(&hints, sizeof(Chints));
hints.ai_family = AF_INET;
hints.ai_socktype = SOCK_STREAM;
hints.ai_protocol = IPPROTO_TCP;

iResult = getaddrinfo("127.0.0.1", "15000", &hints, &result);
if (iResult != @) {
printf("getaddrinfo failed: %d\n", iResult);

WSACleanup();
return 1;

ks

ptr = result;

ConnectSocket = socket(ptr->ai_family, ptr->ai_socktype, ptr-
>ai_protocol);

if (ConnectSocket == INVALID_SOCKET) {
printf("Error at socket(): %ld\n", WSAGetLastError());
freeaddrinfo(result);
WSACleanup();
return 1;

}

iResult = connect(ConnectSocket, ptr->ai_addr, (int)ptr->ai_addrlen);
if (iResult == SOCKET_ERROR) {

closesocket(ConnectSocket);

ConnectSocket = INVALID_SOCKET;

485

freeaddrinfo(result);

if (ConnectSocket == INVALID_SOCKET) {
printf("Unable to connect to server!\n");
WSACleanup(Q);
return 1;

}

iResult = send(ConnectSocket, (const char*)buff_handshake_p1,
(int)sizeof(buff_handshake_pl), @);
printf("Bytes Sent: %ld\n", iResult);

iResult = recv(ConnectSocket, (char*)recvbuf, recvbuflen, 0);
printf("Bytes received: %d\n", iResult);

const unsigned char version[] = "[version]\nversion=\"1.14.9\"\n[/
version]";
send_data(version, sizeof(version), ConnectSocket);

iResult = recv(ConnectSocket, (char*)recvbuf, recvbuflen, 0);
printf("Bytes received: %d\n", iResult);

const unsigned char name[] = "[login]\nusername=\"ChatBot\"\n[/login]";
send_data(name, sizeof(name), ConnectSocket);

const unsigned char first_message[] = "[message]\nmessage=\"ChatBot
connected\"\nroom=\"1lobby\"\nsender=\"ChatBot\"\n[/message]";
send_data(first_message, sizeof(first_message), ConnectSocket);

do {
iResult = recv(ConnectSocket, (char*)recvbuf, recvbuflen, 0);
if (iResult > @)
printf("Bytes received: %d\n", iResult);
else if (iResult == 0)
printf("Connection closed\n");
else
printf("recv failed with error: %d\n", WSAGetLastError());

if (parse_data(recvbuf, iResult)) {
const unsigned char message[] = "[message]\nmessage=\"Hello!
\"\nroom=\"1lobby\"\nsender=\"ChatBot\"\n[/message]";
send_data(message, sizeof(message), ConnectSocket);

}
} while (iResult > 0);

486

closesocket(ConnectSocket);
WSACleanup(Q);

return 0;

A.18 Wesnoth Proxy

Referenced in Chapter 6.5.

An example proxy for Wesnoth 1.14.9 that allows interception and modification of
traffic from a Wesnoth game client to a Wesnoth server. In this case, any time the proxy
sees the chat message \wave, it will send an additional chat message saying Hello!.

The majority of the code is based on the Winsock example provided by Microsoft:
https://docs.microsoft.com/en-us/windows/win32/winsock/complete-client-code and
https://docs.microsoft.com/en-us/windows/win32/winsock/complete-server-code

#include <winsock?2.h>
#include <ws2tcpip.h>
#include <stdio.h>

#pragma comment (lib, "Ws2_32.1ib")

#define DEFAULT_BUFLEN 512
#define DEFAULT_PORT "27015"

#include <zlib.h>

void send_data(const unsigned char* data, size_t len, SOCKET s) {
gzFile temp_data = gzopen("packet.gz", "wb");
gzwrite(temp_data, data, len);
gzclose(temp_data);

FILE* temp_file = NULL;
fopen_s(&temp_file, "packet.gz", "rb");

if (temp_file) {
size_t compress_len = 0;
unsigned char buffer[DEFAULT_BUFLEN] = { @ };

487

https://docs.microsoft.com/en-us/windows/win32/winsock/complete-client-code
https://docs.microsoft.com/en-us/windows/win32/winsock/complete-server-code

¥

compress_len = fread(buffer, 1, sizeof(buffer), temp_file);
fclose(temp_file);

unsigned char buff_packet[DEFAULT_BUFLEN] = { 0 };
memcpy(buff_packet + 3, &compress_len, sizeof(compress_len));
memcpy(buff_packet + 4, buffer, compress_len);

int iResult = send(s, (const char*)buff_packet, compress_len + 4,
printf("Bytes Sent: %ld\n", iResult);

bool parse_dataCunsigned char* buff, int buff_len) {

int

unsigned char data[DEFAULT_BUFLEN] = { @ };
memcpy(data, buff + 4, buff_len - 4);

FILE* temp_file = NULL;
fopen_s(&temp_file, "packet_recv.gz", "wb");

if (temp_file) {
fwrite(data, 1, sizeof(data), temp_file);
fclose(temp_file);

ks

gzFile temp_data_in = gzopen("packet_recv.gz", "rb");
unsigned char decompressed_data[DEFAULT_BUFLEN] = { 0 };
gzread(temp_data_in, decompressed_data, DEFAULT_BUFLEN);
fwrite(decompressed_data, 1, DEFAULT_BUFLEN, stdout);
gzclose(temp_data_in);

return strstr((const char*)decompressed_data, (const char*)"\\wave");

main(void)

WSADATA wsaData;
int iResult;

SOCKET ListenSocket
SOCKET ClientSocket
SOCKET ServerSocket

INVALID_SOCKET;
INVALID_SOCKET;
INVALID_SOCKET;

struct addrinfo* result = NULL,
hints;

0);

488

int iSendResult;
unsigned char recvbuf[DEFAULT_BUFLEN];
int recvbuflen = DEFAULT_BUFLEN;

DWORD timeout = 1000;

// Client Socket
iResult = WSAStartup(MAKEWORD(2, 2), &wsaData);

ZeroMemory(&hints, sizeof(Chints));
hints.ai_family = AF_INET;
hints.ai_socktype = SOCK_STREAM;
hints.ai_protocol = IPPROTO_TCP;
hints.ai_flags = AI_PASSIVE;

iResult = getaddrinfo(NULL, DEFAULT_PORT, &hints, &result);

ListenSocket = socket(result->ai_family, result->ai_socktype, result-
>ai_protocol);

iResult = bind(ListenSocket, result->ai_addr, (int)result->ai_addrlen);

freeaddrinfo(result);

iResult = listen(ListenSocket, SOMAXCONN);
ClientSocket = accept(ListenSocket, NULL, NULL);
closesocket(ListenSocket);

// Server Socket
ZeroMemory(&hints, sizeofChints));
hints.ai_family = AF_INET;
hints.ai_socktype = SOCK_STREAM;
hints.ai_protocol = IPPROTO_TCP;

iResult = getaddrinfo("127.0.0.1", "15000", &hints, &result);

ServerSocket = socket(result->ai_family, result->ai_socktype, result-
>ai_protocol);

iResult = connect(ServerSocket, result->ai_addr, (int)result-
>adi_addrlen);

freeaddrinfo(result);

setsockopt(ServerSocket, SOL_SOCKET, SO_RCVTIMEO, (char*)&timeout,
sizeof(timeout));

do {
iResult = recv(ClientSocket, (char*)recvbuf, recvbuflen, @);
Sleep(100);

489

if (iResult > @) {
printf("Bytes received: %d\n", iResult);
if (parse_data(recvbuf, iResult)) {
const unsigned char message[] = "[message]\nmessage=\"Hello!
\"\nroom=\"1obby\"\nsender=\"ChatBot\"\n[/message]";
send_data(message, sizeof(message), ServerSocket);
Sleep(100);
}

iSendResult = send(ServerSocket, (char*)recvbuf, iResult, 0);
Sleep(100);
printf("Bytes sent: %d\n", iSendResult);
iResult = recv(ServerSocket, (char*)recvbuf, recvbuflen, 0);
Sleep(100);
if (iResult != SOCKET_ERROR) {
iSendResult = send(ClientSocket, (char*)recvbuf, iResult, 0);
Sleep(100);
ks
ks
else if (iResult == @)
printf("Connection closing...\n");
else
printf("recv failed with error: %d\n", WSAGetLastError());

} while (iResult > @ || WSAGetLastError() == WSAETIMEDOUT);
iResult = shutdown(ClientSocket, SD_SEND);
closesocket(ClientSocket);

closesocket(ServerSocket);

WSACleanup();

return 0;

490

A.19 DLL Injector

Referenced in Chapter 7.1.
A DLL injector that loads the specified DLL into Urban Terror.

To load static and dynamic libraries, Windows executables can use the LoadLibraryA
API function. This function takes a single argument, which is a full path to the library to
load.

HMODULE LoadLibraryA(
LPCSTR 1pLibFileName

);

If we call LoadLibraryA in our injector's code, the DLL will be loaded into our injector's
memory. Instead, we want our injector to force the game to call LoadLibraryA. To do
this, we will use the CreateRemoteThread API to create a new thread in the game.
This thread will then execute LoadLibraryA inside the game's running process.

However, since the thread is running inside the game's memory, LoadLibraryA will not
be able to find the path of our DLL specified in our injector. To get around this, we
have to write our DLL's path into the game's memory. To ensure that we do not corrupt
any other memory, we will also need to allocate additional memory inside the game
using VirtualAllocEx.

#include <windows.h>
#include <tlhelp32.h>

// The full path to the DLL to be injected.
const char *dll_path = "C:\\Users\\IEUser\\source\\repos\\wallhack\\Debug\
\wallhack.d11";
int main(int argc, char** argv) {
HANDLE snapshot = 0;
PROCESSENTRY32 pe32 = { 0 };
DWORD exitCode = 0;

pe32.dwSize = sizeof(PROCESSENTRY32);

491

// The snapshot code is a reduced version of the example code provided
by Microsoft at

// https://docs.microsoft.com/en-us/windows/win32/toolhelp/taking-a-
snapshot-and-viewing-processes

shapshot = CreateToolhelp32Snapshot(TH32CS_SNAPPROCESS, @);

Process32First(snapshot, &pe32);

do {
// We only want to operate on the Urban Terror process
if (wcscmp(pe32.szExeFile, L"Quake3-UrT.exe") == 0) {
// First, we need to get a process handle to use for the
following calls
HANDLE process = OpenProcess(PROCESS_ALL_ACCESS, true,
pe32.th32ProcessID);

// So we don't corrupt any memory, allocate additional
memory to hold our DLL path

void *1pBaseAddress = VirtualAllocEx(process, NULL,
strlen(dll_path) + 1, MEM_COMMIT, PAGE_READWRITE);

// Write our DLL path into the memory we just allocated
inside the game

WriteProcessMemory(process, lpBaseAddress, dll_path,
strlen(dll_path) + 1, NULL);

// Create a remote thread inside the game that will execute
LoadLibraryA

// To this LoadlLibraryA call, we will pass the full path of
our DLL that we wrote into the game

HMODULE kernel32base = GetModuleHandle(L"kernel32.d11");

HANDLE thread = CreateRemoteThread(process, NULL, O,
(LPTHREAD_START_ROUTINE)GetProcAddress(kernel32base, "LoadlLibraryA"),
1pBaseAddress, @, NULL);

// To make sure that our DLL is injected, we can use the
following two calls to block program execution

WaitForSingleObject(thread, INFINITE);

GetExitCodeThread(thread, &exitCode);

// Finadlly free the memory and clean up the process handles
VirtualFreeEx(process, lpBaseAddress, @, MEM_RELEASE);
CloseHandle(thread);

CloseHandle(process);

break;

492

}
} while (Process32Next(snapshot, &pe32));

return 0;

A.20 Pattern Scanner

Referenced in Chapter 7.2.

A pattern scanner that will search a running Wesnoth process for the bytes 0x29 42
04. These bytes are the opcode for the sub instruction that is responsible for
subtracting gold from a player when recruiting a unit.

The scanner works by using CreateToolhelp32Snapshot to find the Wesnoth process
and the main Wesnoth module. Once located, a buffer is created and the module's
memory is read into that buffer. The module's memory mainly contains opcodes for
instruction. Once loaded, we loop through all the bytes in the buffer and search for our
pattern. Once found, we print the offset.

#include <windows.h>
#include <tlhelp32.h>
#include <stdio.h>

// Our opcode pattern to scan for inside the process
unsigned char bytes[] = { 0x29, 0x42, 0x04 1},

int main(int argc, char** argv) {
HANDLE process_shapshot = 0;
HANDLE module_snapshot = 0;
PROCESSENTRY32 pe32 = { 0 };
MODULEENTRY32 me32;

DWORD exitCode = 0;

pe32.dwSize
me32.dwSize

sizeof (PROCESSENTRY32);
sizeof (MODULEENTRY32);

// The snapshot code is a reduced version of the example code provided
by Microsoft at

493

// https://docs.microsoft.com/en-us/windows/win32/toolhelp/taking-a-
snhapshot-and-viewing-processes

process_snapshot = CreateToolhelp32Snapshot(TH32CS_SNAPPROCESS, @);

Process32First(process_snapshot, &pe32);

do {
// Only scan for patterns inside the Wesnoth process
if (wcscmp(pe32.szExeFile, L"wesnoth.exe") == @) {
module_snapshot =
CreateToolhelp32Snapshot(TH32CS_SNAPMODULE, pe32.th32ProcessID);

// Retrieve a process handle so that we can read the game's
memory

HANDLE process = OpenProcess(PROCESS_ALL_ACCESS, true,
pe32.th32ProcessID);

Module32First(module_snapshot, &me32);
do {
// Wesnoth is made up of many modules. For our
example, we only want to scan the main executable module's code
if (wcscmp(me32.szModule, L"wesnoth.exe") == 0) {
// Due to the size of the code, dynamically
create a buffer after determining the size
unsigned char *buffer = (unsigned
char*)calloc(l, me32.modBaseSize);
DWORD bytes_read = 0;

// Read the entire code block into our buffer
ReadProcessMemory(process,
(void*)me32.modBaseAddr, buffer, me32.modBaseSize, &bytes_read);

// For each byte in the game's code, check to
see if the pattern of bytes starts at the byte
for (unsigned int i = @; i < me32.modBaseSize -
sizeof(bytes); i++) {
for (int j = 0; j < sizeof(bytes); j++) {
// If so, continue to check if all
the bytes match. If one does not, exit the loop
if (bytes[j] !'= buffer[i + j1) {
break;

¥

// If we are at the end of the
loop, the bytes must all match
if (j + 1 == sizeof(bytes)) {

494

printf("%x\n", i +
(DWORD)me32.modBaseAddr);

¥

free(buffer);
break;

}

} while (Module32Next(module_snapshot, &me32));

CloseHandle(process);
break;

ks
} while (Process32Next(process_snapshot, &pe32));

return 0;

A.21 Memory
Scanner

Referenced in Chapter 7.3.

A memory scanner for Wesnoth that allows you to search, filter, and edit memory inside
the process. This code can be adapted to any target and is intended to show how tools
like Cheat Engine work.

The scanner has three main operations:

. search
. filter
o write

The search operation will scan all memory from 0x00000000 to @x7FFFFFFF and use
ReadProcessMemory to determine if the address holds a certain value. Because

495

ReadProcessMemory fails if a process doesn't have access to an address, the memory
is scanned in blocks. Any values that match are saved to res.txt.

The filter operation iterates over all addresses in res.txt to determine if they match the
provided value. If so, they are saved to res_fil.txt. At the end, res_fil.txt is copied over
to res.txt.

The write operation uses WriteProcessMemory to write a passed value to all addresses
in res.txt

CreateToolhelp32Snapshot is used to find the Wesnoth process, and OpenProcess is
used to retrieve a handle.

#include <windows.h>
#include <tlhelp32.h>
#finclude <stdio.h>

#define size 0x00000808

// The search function scans all memory from 0x00000000 to Ox7FFFFFFF for the
passed value
void search(const HANDLE process, const int passed_val) {

FILE* temp_file = NULL;

fopen_s(&temp_file, "res.txt", "w");

unsigned char* buffer = (unsigned char*)calloc(1l, size);
DWORD bytes_read = 0;

for (DWORD i = 0x00000000; i < Ox7FFFFFFF; i += size) {
ReadProcessMemory(process, (void*)i, buffer, size, &bytes_read);

for (int j = 0; j < size - 4; j += 4) {
DWORD val = 0;
memcpy(&val, &buffer[j]l, 4);
if (val == passed_val) {
fprintf(temp_file, "%x\n", i + j);
ks

}
fclose(temp_file);

free(buffer);

496

// The filter function takes a 1list of addresses in res.txt and checks to see
// if they match the provided value. If so, they are written to res_fil.txt
// After the initial pass, filter writes all the addresses in res_fil.txt to
res.txt

void filter(const HANDLE process, const int passed_val) {

¥

FILE* temp_file = NULL;

FILE* temp_file_filter = NULL;
fopen_s(&temp_file, "res.txt", "r");
fopen_s(&temp_file_filter, "res_fil.txt", "w");

DWORD address = 0;

while (fscanf_s(temp_file, "%x\n", &address) != EOF) {
DWORD val = 0;
DWORD bytes_read = 0;

ReadProcessMemory(process, (void*)address, &val, 4, &bytes_read);
if (val == passed_val) {
fprintf(temp_file_filter, "%x\n", address);
ks
}

fclose(temp_file);
fclose(temp_file_filter);

fopen_s(&temp_file, "res.txt", "w");

fopen_s(&temp_file_filter, "res_fil.txt", "r");

while (fscanf_s(temp_file_filter, "%x\n", &address) != EOF) {
fprintf(temp_file, "%x\n", address);

}

fclose(temp_file);
fclose(temp_file_filter);

remove("res_fil.txt");

// The write function writes a value to every address in res.txt
void write(const HANDLE process, const int passed_val) {

FILE* temp_file = NULL;
fopen_s(&temp_file, "res.txt", "r");

DWORD address = 0;
while (fscanf_s(temp_file, "%x\n", &address) != EOF) {
DWORD bytes_written = 0;

497

WriteProcessMemory(process, (void*)address, &passed_val, 4,
&bytes_written);
ks

fclose(temp_file);
}

// The main function is retrieving a process handle to Wesnoth, parsing the
program's arguments and passing
// execution to the proper operation
int main(int argc, char** argv) {
HANDLE process_snhapshot = 0;
PROCESSENTRY32 pe32 = { 0 };

pe32.dwSize = sizeof(PROCESSENTRY32);

// The snapshot code is a reduced version of the example code provided
by Microsoft at

// https://docs.microsoft.com/en-us/windows/win32/toolhelp/taking-a-
shapshot-and-viewing-processes

process_snhapshot = CreateToolhelp32Snapshot(TH32CS_SNAPPROCESS, @);

Process32First(process_snapshot, &pe32);

do {
// Only retrieve a process handle for Wesnoth
if (wcscmp(pe32.szExeFile, L"wesnoth.exe") == 0) {
// Retrieve a process handle so that we can read and write
the game's memory
HANDLE process = OpenProcess(PROCESS_ALL_ACCESS, true,
pe32.th32ProcessID);

// Convert the second parameter to a DWORD-1ike value
char* p;
long value = strtol(argv[2], &p, 10);

// Depending on the first argument, pass execution to the
search, filter, or write operations
if(strcmp(argv[l], "search") == 0) {
search(process, value);
}
else if(strcmpCargv[l], "filter") == 0) {
filter(process, value);

}
else if (strcmp(argv[l], "write") == 0) {

498

write(process, value);

¥

// Close the process handle
CloseHandle(process);
break;

ks
} while (Process32Next(process_snapshot, &pe32));

return 0;

A.22 Disassembler

Referenced in Chapter 7.4.

A limited disassembler that will search for a running Wesnoth process and then
disassemble @x50 bytes starting at @x7ccd91. These instructions are responsible for
subtracting gold from a player when recruiting a unit.

The disassembler works by using CreateToolhelp32Snapshot to find the Wesnoth
process and the main Wesnoth module. Once it is located, a buffer is created and the
module's memory is read into that buffer. The module's memory mainly contains
opcodes for instruction. Once they are loaded, we loop through all the bytes in the
buffer and disassemble them based on the reference provided by Intel here.

#include <windows.h>
#include <tlhelp32.h>
#include <stdio.h>

#define START_ADDRESS @x7ccd9l

// The 8 possible operand values
const char modrm_value[8][4] = {

"ecx",
"edx",
"ebx",
"esp"”,
"ebp",

esi",

499

https://software.intel.com/content/www/us/en/develop/download/intel-64-and-ia-32-architectures-sdm-combined-volumes-1-2a-2b-2c-2d-3a-3b-3c-3d-and-4.html

"ed-i."

s

// Table 2-2 in the reference document describes how to retrieve the operands
from a ModR/M value
int decode_operand(unsigned char* buffer, int location) {
if (buffer[location] >= 0x(C@ && buffer[location] <= OxFF) {
printf("%s, %s", modrm_value[buffer[location] % 8],
modrm_value[(buffer[location] >> 3) % 8]);
return 1;
}
else if (buffer[location] >= 0x80@ && buffer[location] <= @OxBF) {
DWORD displacement = buffer[location + 1] | (buffer[location + 2]
<< 8) | (buffer[location + 3] << 16) | (buffer[location + 4] << 24);
printf("[%s+%x], %s", modrm_value[buffer[location] % 8],
displacement, modrm_value[(buffer[location] >> 3) % 8]);
return 5;
ks
else if (buffer[location] >= 0x40 && buffer[location] <= Ox7F) {
printf("[%s+%x], %s", modrm_value[buffer[location] % 8],
buffer[location+1], modrm_value[(buffer[location] >> 3) % 8]);
return 2;

¥

return 1;

¥

int main(int argc, char** argv) {
HANDLE process_snapshot = 0;
HANDLE module_snapshot = 0;
PROCESSENTRY32 pe32 = { 0 };
MODULEENTRY32 me32;

DWORD exitCode = 0;

pe32.dwSize
me32.dwSize

sizeof (PROCESSENTRY32);
sizeof (MODULEENTRY32);

// The snapshot code is a reduced version of the example code provided
by Microsoft at

// https://docs.microsoft.com/en-us/windows/win32/toolhelp/taking-a-
shapshot-and-viewing-processes

process_shapshot = CreateToolhelp32Snapshot(TH32CS_SNAPPROCESS, @);

Process32First(process_snapshot, &pe32);

500

do {
// Only disassmble the Wesnoth process
if (wcscmp(pe32.szExeFile, L"wesnoth.exe") == 0) {
module_snapshot =
CreateToolhelp32Snapshot(TH32CS_SNAPMODULE, pe32.th32ProcessID);

// Retrieve a process handle so that we can read the game's
memory

HANDLE process = OpenProcess(PROCESS_ALL_ACCESS, true,
pe32.th32ProcessID);

Module32First(module_snapshot, &me32);
do {
// Weshoth is made up of many modules. For our
example, we only want to scan the main executable module's code
if (wcscmp(me32.szModule, L"wesnoth.exe") == 0) {
// Due to the size of the code, dynamically
create a buffer after determining the size
unsigned char* buffer = (unsigned
char*)calloc(1l, me32.modBaseSize);
DWORD bytes_read = 0;

// Read the entire code block into our buffer
ReadProcessMemory(process,
(void*)me32.modBaseAddr, buffer, me32.modBaseSize, &bytes_read);

DWORD loc = 0;
unsigned int i = START_ADDRESS -
(DWORD)me32 .modBaseAddr;

// For each byte in the game's code, attempt to
disassmble it
while (i < START_ADDRESS + 0x50 -
(DWORD)me32 .modBaseAddr) {
printf("%x:\t", i +
(DWORD)me32 .modBaseAddr);
switch (buffer[i]) {
case Ox1:
printf("ADD ");
1++;
i += decode_operand(buffer, i);
break;
case 0x29:
printf("SUB ");
i++;

501

i += decode_operand(buffer, i);
break;
case Ox74:
printf("JE ");
printf("%x", i +
(DWORD)me32.modBaseAddr + 2 + buffer[i + 1]);
i+= 2;
break;
case 0x80:
printf("CMP ");
i++;
i += decode_operand(buffer, i);
break;
case 0x8D:
printf("LEA ");
i++;
i += decode_operand(buffer, i);
break;
case Ox8B:
case 0x89:
printf("MOV ");
i++;
i += decode_operand(buffer, i);
break;
case OxES8:
printf("CALL ");
i++;
loc = buffer[i] | (buffer[i+1] <<
8) | (buffer[i+2] << 16) | (buffer[i+3] << 24);
printf("%x", loc + (i +
(DWORD)me32 .modBaseAddr) + 4);

i += 4;
break;
default:
printf("%x", buffer[i]);
i++;
break;
}
printf("\n");
}
free(buffer);
break;

502

} while (Module32Next(module_snapshot, &me32));

CloseHandle(process);
break;

ks
} while (Process32Next(process_snapshot, &pe32));

return 0;

A.23 Debugger

Referenced in Chapter 7.5.

An example of a Windows debugger that will attach to a running Assault Cube 1.2.0.2
process, change a specific instruction to an int 3 instruction (0xCC), and then restore
the original instruction when the breakpoint is hit. The instruction modified only
executes when the player is firing, allowing us to verify that the debugger is working as
intended.

#include <windows.h>
#include <tlhelp32.h>
#include <stdio.h>

int main(int argc, char** argv) {
HANDLE process_snapshot = NULL;
HANDLE thread_handle = NULL;
HANDLE process_handle = NULL;

PROCESSENTRY32 pe32 = { 0 };

DWORD pid;

DWORD continueStatus = DBG_CONTINUE;
DWORD bytes_written = 0;

BYTE instruction_break = @xcc;
BYTE instruction_normal = 0x8b;

DEBUG_EVENT debugEvent = { 0 };

503

CONTEXT context = { 0 };
bool first_break_has_occurred = false;
pe32.dwSize = sizeof(PROCESSENTRY32);

// Iterate through all active processes and find the Assault Cube process
process_snapshot = CreateToolhelp32Snapshot(TH32CS_SNAPPROCESS, @);
Process32First(process_shapshot, &pe32);

do {
if (wcscmp(pe32.szExeFile, L"ac_client.exe") == 0) {
// Save the pid and write the int 3 instruction to 0x0046366C
pid = pe32.th32ProcessID;

process_handle = OpenProcess(PROCESS_ALL_ACCESS, true,
pe32.th32ProcessID);

WriteProcessMemory(process_handle, (void*)@x0046366C,
&instruction_break, 1, &bytes_written);

}
} while (Process32Next(process_snapshot, &pe32));

// Attach the debugger and enter the main debug loop
DebugActiveProcess(pid);

for (550 {
continueStatus = DBG_CONTINUE;

if (!WaitForDebugEvent(&debugEvent, INFINITE))
return 0;

switch (debugEvent.dwDebugEventCode) {
case EXCEPTION_DEBUG_EVENT:
switch (debugEvent.u.Exception.ExceptionRecord.ExceptionCode)
{
case EXCEPTION_BREAKPOINT:
printf("Breakpoint hit");

// Our main breakpoint code
// This will first be hit when attaching, so ignore the first
time we enter this condition
if (first_break_has_occurred) {
// If we break, open a handle to the thread that
triggered the event and revert back eip to the previous instruction

504

thread_handle = OpenThread(THREAD_ALL_ACCESS, true,

debugEvent.dwThreadld);
if (thread_handle != NULL) {
context.ContextFlags = CONTEXT_ALL;
GetThreadContext(thread_handle, &context);

context.Eip--;

SetThreadContext(thread_handle, &context);
CloseHandle(thread_handle);

// Then, write back the previous mov instruction so

our breakpoint does not trigger again
WriteProcessMemory(process_handle, (void*)0x0046366C,

&instruction_normal, 1, &bytes_written);
ks
}

first_break_has_occurred = true;
continueStatus = DBG_CONTINUE;
break;
default:
continueStatus = DBG_EXCEPTION_NOT_HANDLED;

break;

}

break;
default:
continueStatus = DBG_EXCEPTION_NOT_HANDLED;

break;

}

ContinueDebugEvent(debugEvent.dwProcessId, debugEvent.dwThreadld,
continueStatus);

}

CloseHandle(process_handle);

return 0;

505

A.24 Call Logger

Referenced in Chapter 7.6.

An example of a modified Windows debugger that will attach to a running Wesnoth

process, locate all call instructions, and change them to an int 3 instruction. When the
breakpoint is hit, the location will be logged and the instruction will be restored. Then,

after the instruction is executed, an int 3 instruction will be rewritten to the location.

#include <windows.h>
#include <tlhelp32.h>
#include <stdio.h>
#include <Psapi.h>

#define READ_PAGE_SIZE 4096

int main(int argc, char** argv) {
HANDLE process_snhapshot = NULL;
HANDLE thread_handle = NULL;
HANDLE process_handle = NULL;

PROCESSENTRY32 pe32 = { 0 };

DWORD pid;
DWORD continueStatus = DBG_CONTINUE;
DWORD bytes_written = 0;

BYTE instruction_break = 0@xcc;
BYTE instruction_call = 0xe8;

DEBUG_EVENT debugEvent = { 0 };
CONTEXT context = { 0 };
bool first_break_has_occurred = false;

HMODULE modules[128] = {

}s
MODULEINFO module_info 1)

0
{0}
DWORD bytes_read = 0;

DWORD offset = 0;

DWORD call_location = 0;

506

DWORD call_location_bytes_read = 0;
DWORD last_call_location = 0;

unsigned char instructions[READ_PAGE_SIZE] = { 0 };
int breakpoints_set = 0;
pe32.dwSize = sizeof(PROCESSENTRY32);

// Iterate through all active processes and find the Wesnoth process
process_snapshot = CreateToolhelp32Snapshot(TH32CS_SNAPPROCESS, @);
Process32First(process_shapshot, &pe32);

do {
if (wcscmp(pe32.szExeFile, L"wesnoth.exe") == 0) {
// Save the pid and open a handle to the process
pid = pe32.th32ProcessID;

process_handle = OpenProcess(PROCESS_ALL_ACCESS, true,
pe32.th32ProcessID);

ks
} while (Process32Next(process_snapshot, &pe32));

// Attach the debugger and enter the main debug loop
DebugActiveProcess(pid);

for (55D {
continueStatus = DBG_CONTINUE;

if (!WaitForDebugEvent(&debugEvent, INFINITE))
return 0;

switch (debugEvent.dwDebugEventCode) {
case EXCEPTION_DEBUG_EVENT:
switch (debugEvent.u.Exception.ExceptionRecord.ExceptionCode)
{
case EXCEPTION_BREAKPOINT:
// On the initial attachment breakpoint, replace all calls
with breakpoints
if (!first_break_has_occurred) {
thread_handle = OpenThread(THREAD_ALL_ACCESS, true,
debugEvent.dwThreadId);

printf("Attaching breakpoints\n");

507

// In this code, we will only log all calls in the main
game module and not DLLs
// To locate the address space of this module, retrieve
all the modules and then get the first
// module's address space
EnumProcessModules(process_handle, modules,
sizeof(modules), &bytes_read);
GetModuleInformation(process_handle, modules[@],
&module_info, sizeof(module_info));
// Next, loop through each section of memory and locate
the opcode for calls (@xe8)
for (DWORD i = @; i < module_info.SizeOfImage; i +=
READ_PAGE_SIZE) {
// ReadProcessMemory will fail if the memory
permissions are not correct for the page
// To prevent a single failure from skipping all
memory, read a single page of memory at a time
ReadProcessMemory(process_handle, (LPVOID)
((DWORD)module_info.1lpBaseOfD1ll + i), &instructions, READ_PAGE_SIZE,
&bytes_read);
for (DWORD ¢ = @; ¢ < bytes_read; c++) {
// If we detect an 0xe8, determine if it is a
call instruction
// We do this by first reading the next four
bytes after the 0xe8
// We then use these bytes to calculate the call
location
// If this location is outside the address space
of the main module, we ignore the opcode
if (instructions[c] == instruction_call) {
offset = (DWORD)module_info.lpBaseOfD11l + i +
c;
ReadProcessMemory(process_handle, (LPVOID)
(offset + 1), &call_location, 4, &call_location_bytes_read);
call_location += offset + 5;
if (call_location <
(DWORD)module_info.1pBaseOfD11l |l call_location
>(DWORD)module_info.1pBaseOfD11l + module_info.SizeOfImage)
continue;

// If the call location is valid, write a
break instruction (@xcc) at the address

// In this case, 0x0040e3d8 and 0x0040e3ea
are two commonly called addresses that contain low-level code

508

// To prevent them from clogging up the logs,
we don't log these locations
// In addition, having thousands of
breakpoints can cause the executing program to crash
// Therefore, we limit the amount of
breakpoints to less than 2000
if (offset != 0x0040e3d8 && offset !=
0x0040e3ea && breakpoints_set < 2000) {
WriteProcessMemory(process_handle,
(void*)offset, &instruction_break, 1, &bytes_written);
FlushInstructionCache(process_handle,
(LPVOID)offset, 1);
breakpoints_set++;

}

printf("Done attaching breakpoints\n");
}
else {
// If we break, open a handle to the thread that
triggered the event and revert back eip to the previous instruction
// Next, we will set single-step mode so that we can
restore our breakpoint
// After, we will write back the call instruction and
continue execution of the program
thread_handle = OpenThread(THREAD_ALL_ACCESS, true,
debugEvent.dwThreadld);
if (thread_handle != NULL) {
context.ContextFlags = CONTEXT_ALL;
GetThreadContext(thread_handle, &context);

context.Eip--;
context.EFlags |= 0x100;

SetThreadContext(thread_handle, &context);
CloseHandle(thread_handle);

WriteProcessMemory(process_handle,
(void*)context.Eip, &instruction_call, 1, &bytes_written);

FlushInstructionCache(process_handle,
(LPVOID)context.Eip, 1);

last_call_location = context.Eip;

509

}

first_break_has_occurred = true;
continueStatus = DBG_CONTINUE;
break;
case EXCEPTION_SINGLE_STEP:
// This code will executed after we enter single-step mode in
the breakpoint statement above
// Single-step mode executes a single instruction and then
triggers this debug event
// Therefore, after we execute the call we broke on above,
restore the break instruction so that our breakpoints don't
// only fire a single time
thread_handle = OpenThread(THREAD_ALL_ACCESS, true,
debugEvent.dwThreadId);
if (thread_handle !'= NULL) {
context.ContextFlags = CONTEXT_ALL;
GetThreadContext(thread_handle, &context);
CloseHandle(thread_handle);

WriteProcessMemory(process_handle,
(void*)last_call_location, &instruction_break, 1, &bytes_written);

FlushInstructionCache(process_handle,
(LPVOID)1last_call_location, 1);

printf("0x%08x: call 0x%08x\n", last_call_location,
context.Eip);
last_call_location = 0;

}

continueStatus
break;

default:
continueStatus
break;

DBG_CONTINUE;

DBG_EXCEPTION_NOT_HANDLED;

+
break;
default:
continueStatus = DBG_EXCEPTION_NOT_HANDLED;
break;

}

ContinueDebugEvent(debugEvent.dwProcessId, debugEvent.dwThreadld,
continueStatus);

510

}

CloseHandle(process_handle);

return 0;

511

	Table of Contents
	Introduction
	External Resources
	Basics
	1.1 Computer Fundamentals
	1.2 Game Fundamentals
	1.3 Hacking Fundamentals
	1.4 Setting Up a Lab VM
	1.5 Memory Hack

	Debugging & Reversing
	2.1 Debugging Fundamentals
	2.2 Reversing Fundamentals
	2.3 Changing Game Code
	2.4 Reversing Code
	2.5 Code Caves
	2.6 Using Code Caves
	2.7 Dynamic Memory Allocation
	2.8 Defeating DMA

	Programming
	3.1 Programming Fundamentals
	3.2 External Memory Hack
	3.3 DLL Memory Hack
	3.4 Code Caves & DLL’s
	3.5 Printing Text

	RTS Hacks
	4.1 Stathack
	4.2 Map Hack
	4.3 Macro Bot

	FPS Hacks
	5.1 3D Fundamentals
	5.2 Wallhack (Memory)
	5.3 Wallhack (OpenGL)
	5.4 Chams (OpenGL)
	5.5 Triggerbot
	5.6 Aimbot
	5.7 No Recoil
	5.8 Radar Hack
	5.9 ESP
	5.10 Multihack

	Multiplayer
	6.1 Multiplayer Fundamentals
	6.2 Packet Analysis
	6.3 Reversing Packets
	6.4 Creating an External Client
	6.5 Proxying TCP Traffic

	Tool Development
	7.1 DLL Injector
	7.2 Pattern Scanner
	7.3 Memory Scanner
	7.4 Disassembler
	7.5 Debugger
	7.6 Call Logger

	Appendix A
	A.1 Lab VM Setup Script
	A.2 Wesnoth External Gold Hack
	A.3 Wesnoth Internal Gold Hack
	A.4 Wesnoth Code Cave DLL
	A.5 Wesnoth Stathack
	A.6 Wesnoth Map Hack
	A.7 Wyrmsun Macrobot
	A.8 Urban Terror Memory Wallhack
	A.9 Urban Terror OpenGL Wallhack
	A.10 Urban Terror OpenGL Chams
	A.11 Assault Cube Triggerbot
	A.12 Assault Cube Aimbot
	A.13 Assault Cube No Recoil
	A.14 Assault Cube ESP
	A.15 Assault Cube Multihack
	A.16 Wesnoth Multiplayer Bot
	A.17 Wesnoth ChatBot
	A.18 Wesnoth Proxy
	A.19 DLL Injector
	A.20 Pattern Scanner
	A.21 Memory Scanner
	A.22 Disassembler
	A.23 Debugger
	A.24 Call Logger

